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Introduction

Polydactyly is an inherited condition clinically illustrated 
by an extra supernumerary digit or toe, which may or 
may not have a bony element. Polydactyly is categorized 
into three different types: central polydactyly (axial), 
preaxial polydactyly (radial), and postaxial polydactyly 
(PAP) (ulnar) (1-3). In humans, there are 13 known genes 
associated with nonsyndromic polydactyly, namely, 
GLI3 (OMIM 165240), EFCAB7 (OMIM 617632), 
STKLD1 (OMIM 618530), GLI1 (OMIM 165220), SMO 
(OMIM 601500), ZNF141 (OMIM 194648), DACH1 
(OMIM 603803), IQCE (OMIM 617631), MIPOL1 
(OMIM 606850), LRP4 (OMIM 604270), PITX1 
(OMIM 602149), KIAA0825 (OMIM 617266), LMBR1/
ZRS (OMIM 605522), and FAM92A1 (OMIM 617273) 
(4-17).

The GLI and hedgehog pathway is an extremely 
maintained signaling mechanism crucial for managing 
cell determination, cell-to-cell interactions, and modeling 
of tissue during embryonic growth. Sonic hedgehog plays 
a pivotal role in regulating digit numbering throughout 
embryonic development by modulating the functions of 
transcription factors belonging to the GLI family, such as 

GLI3, GLI1, and GLI2 (18,19). GLI proteins bind DNA 
using a consecutive set of five C2H2 zinc finger (ZF) 
motifs and feature a carboxy-terminal transactivation 
domain (20). In addition, GLI3 and GLI2 possess an 
N-terminal repressor region, enabling them to serve as 
dual transcription factors, In contrast, GLI1 functions 
exclusively as a transcriptional activator. GLI1 transcript 
levels increase in response to hedgehog (Hh) ligands, 
indicating that GLI1 is a target gene and amplifier within 
the Hh pathway (21). Canonical stimulation of the GLI–
Hh signaling pathway begins when the Hh molecule 
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binds to Patched 1 (PTCH1; 12 TM receptor), leading 
to the activation of the G protein-coupled receptor 
Smoothened (SMO; seven-pass transmembrane), which 
functions as a repressor. Functional SMO originates a 
multiplex intracellular cascade that ultimately results 
in the triggering of the three GLI transcription factors 
(GLI1, GLI2, and GLI3), serving as the ultimate effecters 
of the GLI–Hh pathway (Figure 1 (22)).

In the current study, we recruited a Pakistani family 
exhibiting polydactyly inherited in an autosomal 
recessive pattern. Our analysis revealed a homozygous 
missense variant, [c.1133C > T, p.(Ser378Leu)], in the 
GLI1 gene. This variant has been previously reported 
and is associated with phenotypic variability in affected 
individuals. The findings suggest that while the variant 
in GLI1 is known, its phenotypic expression may vary, 
underscoring the complexity of genotype–phenotype 
correlations in polydactyly.

Methods

Photographs were taken of all participating family 
members or their guardians and provided written 
informed consent for both publication and genetic 
analysis. Pedigrees were constructed based on 
knowledge provided by well-informed family members. 
Venous blood samples (3–5 ml) were collected from 
both healthy and affected individuals in the family using 
EDTA vacutainer tubes. Genomic DNA from the blood 
samples was isolated using a commercially available 
DNA extraction and purification kit. Quantification 
of the purified DNA was conducted using the Thermo 
Scientific NanoDrop.

Whole Exome Sequencing (WES)

The WES on DNA from IV-3 in the family was performed 
using Illumina HiSeq-5200 using standard protocols. The 
average sequencing depth achieved was approximately 
100×, with at least 95% of the target regions covered 
at a minimum depth of 20×. After exome enrichment, 
reads were obtained and aligned against human genome 
assembly hg19 (GRCh37) using Burrows-Wheeler 
Aligner (BWA v.0.7.5) (23). Duplicate exclusion, quality 
recalibration, indel rearrangement, variant calling, and 
identification were executed utilizing Picard and the 
genome analysis toolkit (24). The variants underwent 
annotation via ANNOVAR (25). The criteria for selecting 
variants included a minor allele frequency of <0.001 in 
normal human databases (26), a CADD-phred score 
exceeding 13, and variants located within splice sites 
(±12 bp) and exonic regions (27).

Primer Designing and Sanger Sequencing 
Validation

The selected variant sequence was acquired from the 
UCSC genome browser. Primers were generated using 
the online tool Primer3, and their specificity was verified 
using Primer Stats. To confirm the results from WES 
and assess the co-segregation of the identified variant, 
DNA from both affected and healthy individuals was 
Sanger sequenced. The resulting Sanger sequencing 
chromatograms were analyzed using the BioEdit 
sequence alignment editor (BioEdit v.0.7.2). The disease-
causing potential of the variant was confirmed using 

Figure 1. Activation of GLI through hedgehog signaling pathway.
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available online tools such as Polyphen-2, Mutation 
Taster, and SIFT.

Results

Clinical assessments

In family A, three normal members (III-2, III3, and IV-1) 
and two affected individuals (IV-1 and IV-2) contributed 
to the study (Figure 2b). The affected member (IV-
2) exhibited bilateral PAP type B in hands only. The 
affected individual (IV-3) manifested PAP type B in the 
right hand only. No other abnormalities were seen in all 
affected individuals (Figure 2b, c).

Genetic investigation

Affected member (IV-3) in family A underwent exome 
sequencing. WES analysis revealed a homozygous 
variant [c.1133C > T, p.(Ser378Leu)] in family A (Figure 
2d) in the GLI1. Variant segregated within the respective 
family, indicating potential inheritance patterns. The 
[c.1133C > T, p.(Ser378Leu)] variant was not present in 
gnomAD v2.1.1 in homozygous form. The homozygous 
variant [c.1133C > T, p.(Ser378Leu)] has a GERP++ 
score of 4.53 and a CADD and Phred score of 27.1. 
The variant was evaluated using various online tools, 
including Mutation Taster, CADD Phred, and GERP++ 
scores, and predicted to be disease-causing. Variant is 
classified as “likely pathogenic” according to the ACMG 
classification.

Discussion

A Pakistani-origin family, demonstrating isolated PAP 
type B, was clinically and molecularly characterized 
in the study presented here. WES followed by 
Sangar sequencing revealed a homozygous variant 
p.(Ser378Leu))] in the GLI1 gene.

The GLI1 gene, residing on the 12q13.3 chromosome, 
encodes the GLI1 protein comprising 1106 amino 
acids (28). This protein functions as a moderator in 
the Hh signaling pathway. Upon the interaction of the 
Hh molecule with its receptor, GLI proteins become 
activated, leading to the target gene transcription involved 
in bone development and modeling (29). The GLI1 
protein harbors specific regions, comprising a ZF domain 
spanning amino acids 235 to 387, degron degradation 
signals at amino acids 77 to 116 and amino acids 464 to 
469, SUFU binding domains at amino acids 111 to 125, 
and the C-terminus, a nuclear localization signal from 
amino acids 380 to 420, and the transactivation domain 
between amino acids 1020 and 1091.

Variant [p. (Ser378Leu)] identified in the current 
study resides in the ZF domain of GLI1. The variant is 
supposed to prevent protein and DNA binding, leading 
to the disturbance of the Hh pathway, which regulates 
the growth of limbs and the formation of digits. During 
the Shh-dependent phase of limb development, Shh 
induction triggers GLI1 expression in the posterior limb 
region and increases levels of full-length GLI activators 
(GLI1, GLI2, and GLI3FL), crucial for anterior–
posterior patterning and digit formation. These activators 

are essential for the proliferation and sustenance of both 
posterior and anterior progenitor cells. GLI1 and Gli2 
protein levels increase until E10.75 (Embryonic Day 
10.75) and then stabilize through E12.5 (Embryonic 
Day 10.75). This observation aligns with earlier research 
demonstrating a significant expansion of cells expressing 
Shh and responding to it, which concurrently express 
GLI1 during this developmental period (30,31).

In previous studies, seven variants within the GLI1 gene 
have been identified, each associated with various forms 
of polydactyly, with PAP type A being the most common 

Figure 2. a: Pedigree of family segregating postaxial 
polydactyly in an autosomal recessive manner. Squares 
represent male family members and circles represent female 
family members. Filled symbols designate affected individuals. 
An asterisk indicates from whom the DNA sample was 
obtained. All affected individuals manifest bilateral postaxial 
polydactyl in their hands. b,c: Hands of individual IV-2 and 
IV-3 of family exhibiting PAP type B. d: Electropherograms 
obtained from Sanger sequencing showing variant in the 
GLI1 gene. The upper panel shows the nucleotide sequence 
in the heterozygous carrier, while the homozygous affected 
individual [c.1133C > T, p.(Ser378Leu)] is in the lower panel.
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type observed. Among these, the distinct subtype known 
as PAP type B—characterized by an extra digit that is 
often underdeveloped and lacks normal functionality—
had been linked to only a single variant, as shown in 
Table 1. In our current study, however, we observed the 
specific phenotype of PAP type B in both individuals 
carrying this variant, further corroborating its association 
with this distinct subtype. Our identification of a variant in 
GLI1 correlated with this subtype adds valuable insights 
to the genetic complexity of polydactyly disorders. 

Prenatal genetic screening and newborn screening have 
experienced significant advancements in recent years, 
boosted by the accessibility and speed of next-generation 
sequencing technologies (32). Sequencing cell-free 
DNA with NGS technologies from maternal plasma has 
resulted in the creation of remarkably sensitive screening 
tests for fetal aneuploidies. Likewise, prenatal diagnosis 
for monogenic disorders (PGT-M) can be achieved during 
early gestation stages (33). As NGS-based sequencing 
technology continues to improve, with reduced costs and 
faster data analysis, cell-free nucleic acid sequencing 
is expected to take on a progressively more vital part 
in prenatal diagnosis, monitoring, screening, and risk 
assessment for both maternal and fetal conditions (34).

In conclusion, we studied a Pakistani family exhibiting 
PAP type B in autosomal recessive manners. WES 
uncovered a variant in the GLI1 gene. The study not only 
broadened the range of variants identified in GLI1 but 
also underscored the clinical variability present within 
the families. This research will aid in the diagnosis and 
genetic counseling of patients with limb disorders within 
the Pakistani population.
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polydactyly to EVC syndrome
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Missense homozygous c.1010C > T Ser337Leu Postaxial polydactyly Pakistani
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