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Introduction

Polydactyly is characterized as the presence of well-
formed extra digits in upper or lower limbs (1). It can 
be an isolated deformity (non-syndromic) or associated 
with a complex progressive syndrome (syndromic). 
The syndromic condition exhibits severe phenotypic 
complications, including disorders such as Laurin-sand 
row syndrome, Acrocallosal syndrome, split-hand foot 
malformation, Bardet-Biedl Syndrome, and complex 
ciliatory diseases (2-5). Polydactyly is classified into 
three categories, which include postaxial polydactyly 
(PAP), pre-axial polydactyly and complex polydactyly. 
PAP and preaxial polydactyly is further divided into 
two subgroups: type A, with fully developed bone in 
the extra digit or type B, which is non-function in the 
form of the skin tag, with or without nail (6-8). PAP 
type A and B are the most prevalent type of polydactyly. 
To date, eleven genes have been associated with non-
syndromic polydactyly [glioma-associated oncogene 
family zinc finger 1 (GLI3), SHH, STKLD1, MIPOL1, 
GLI1, ZNF141, IQ domain-containing protein E 
(IQCE), FAM92A, KIAA0825, DACH1, PITX] (6-13) 

(Tables 1 and 2). Abnormalities of human hands and 
feet occur frequently in the general population. The 
development of human limbs is regulated by a series 
of complex cellular pathways including hedgehog 
(HH), WNT, and bone morphogenetic proteins. 
Deficiency of any regulator in such pathways leads to 
diverse types of limb deformities and other syndromic 
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skeletal deformities (14). Polydactyly is one of such 
deformities that results due to defects in anterior-
posterior patterning of the limb development (14). In 
the era of advanced technologies, WES has been very 
successful in clinical exome analysis, solving many 
cases, and identifying novel candidate genes. WES has 
both low cost and quick meth for molecular analysis 
of genetic disorders (15). In the present study, we have 
investigated a proband exhibiting non-syndromic PAPA 
phenotype segregating in autosomal recessive mode. 
Using WES, we identified a previously reported bi-
allelic variant in the intron five of the IQCE gene that 
might be associated with the polydactyly condition in 
our patient.

Subjects and Methods

For the present study, a family with an AR inheritance 
pattern was recruited from the Khyber Pakhtunkhwa 
province of Pakistan (Figure 1A). The proband (II-
1) was evaluated by taking a medical history and 
performing biochemical tests at a local government 
hospital. Consent in written form was obtained from 
the participants for the genetic analysis, and the 
University of Management and Technology (UMT), 
Lahore, Pakistan Institutional Review Board approved 
the study in compliance with the Helsinki Declaration. 
Blood samples were collected and processed further 
for DNA extraction and quantification using standard 
methods (16,17). WES was performed using DNA from 
the proband (IV-1). WES and variants filtering steps 
were performed as described earlier (18-21). Standard-
screening principles were used to search for different 
functional variants associated with the patient phenotype 
(22). The genes already reported in the Online Mendelian 
Inheritance in Man (OMIM) (Table 1) and literature 
(PUBMED) were given priority. Prioritized disease-
causing variants were Sanger sequenced for segregation 
analysis (23,24). The pathogenic nature of the identified 
variant was calculated using different tools. ExAC, 
in-house 175 exomes and genomAD were searched to 
see if the variant is reported in the general population 
(25,26). Conservation of amino acid was determined 
using HomoloGene (National Center for Biotechnology 

Information). The partial amino acid sequence of IQCE, 
the encoding protein, was retrieved from the UniProt 
database with accession number P78357-1. The IQCE 
model was examined/evaluated and, after that, selected 
according to the obtained evaluation score provided by 
I-TASSER and MODELLER (27,28).

Results

Clinical examination

The proband (age 4 years) is a boy born to consanguineous 
parents that revealed bilateral PAP in hands and feet 
(Figure 1B). The extra digits were well-developed. 
Samples were attained from all the available family 
members. Hand/digit photographs were provided 
by the index (II-2). Hands and feet X-rays revealed 
underdeveloped carpals, metacarpals, and similarly 
underdeveloped tarsals and mete tarsals. No associated 
abnormality was observed, such as kidney stones, eye 
deformity, obesity, or hypogonadism. Syndactyly, facial 
dysmorphism and nail deformity was not observed. 
Physical examination demonstrated that the other finger 
originated from the fifth metacarpal. Later, the extra 
digits were removed surgically.

Molecular analysis

Using WES, we identified a previously reported splice 
site variant in the IQCE gene associated with PAPA-
AR. The identified variant is a bi-allelic splice acceptor 
site variant (c.395-1G>A) in the intron 5 of the IQCE 
(NM_152558.5) located on chromosome 7p22.3-7p22.3 
(Figure 1C). The variant was Sanger sequenced and 
segregated using standard protocols (Figure 1C). The 
variant was not observed in a homozygous state in an 
internal database, ExAC, gnomAD, and was predicted 
deleterious by several tools.

3D structure prediction

Using homology modeling, three-dimensional models of 
wild type and mutated IQCE protein (p.Gly132Valfs*22) 
were predicted and assessed using online structure 
analysis tools (Figure 2A and B). 3D protein modeling 
showed substantial changes and reduction of key 

Table 1. Genes associated with non-syndromic PAP.

Genes Disease Inheritance Locus OMIM

GLI3 PAPA1 AD 7p14.1 174200
Unknown PAPA2 AD 13q21-q32 602085
Unknown PAPA3 AD 19p13.2-p13.1 607324
Unknown PAPA4 AD 7q22 608562
Unknown PAPA5 AR 13q13.3-q21.2 263450
ZNF141 PAPA6 AR 4p16.3 615226
IQCE PAPA7 AR 7p22.3 617642
GLI1 PAPA8 AR 12q13.3 618123

FAM92A PAPA9 AR 8q22.1 618219
KIAA0825 PAPA10 AR 5q15 618498
DACH1 PAPA11 AR 13q2133 603803
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domains in the mutated IQCE protein secondary structure 
compared to the wild-type IQCE.

Discussion

Herein, we used clinical and molecular methods to 
characterize a proband having bilateral non-syndromic 

PAPA without syndactyly. However, previously the same 
variant has been associated with PAPA-restricted lower 
limbs only. Later, it was confirmed that variants in IQCE 
cause PAPA in both upper and lower limbs (29). WES 
data analysis revealed an already reported bi-allelic 
variant (c.395-1G>A) in the IQCE gene. Variants in 

Figure 1. (A) Pedigree of the family showing AR pattern of inheritance. (B) Xrays of the proband (II-1). (C) Sanger 
electrograms of the affected, carrier and wildtype. (D) Schematic representation of IQCE with EFCAB7 that intern 
interacts with EVC/EVC2 proteins that ultimately regulate the HH signalling pathway responsible for limb patterning 
and development.

Figure 2. IQCE protein modelling. (A) IQCEMutated structure showing the complete reduction. (B) IQCEWild-type structure.
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IQCE have been previously associated with PAPA7, and 
the identified variant has been validated using minigene 
splice assay (8), showing deletion of G nucleotide from 
exon 6. This deletion results in frameshift and premature 
stop codon (p.Gly132Valfs*22) that might lead to small 
IQCE protein or mRNA nonsense-mediated decay.

Using patients’ fibroblasts, the RNA expression 
analysis revealed that IQCE pathogenesis results in the 
dysregulation of several genes associated with the HH-
signaling pathway. Furthermore, knock-out zebrafish 
trials revealed astonishing phenotypes associated with 
cilia dysregulation, such as left-right asymmetry, body 
curvature issues, misdirected cilia in the pronephric duct, 
kidney cysts, and retinal defects (29). Thus, suggesting 
the key role of IQCE in the ciliatory development and 
regulating genes associated with the HH pathway. As 
disease-causing variants in the Ellis-Van Creveld (EVC) 
and EVC2 are associated with EVC syndrome in humans. 
One of the phenotypes in EVC patients is PAP. The 
disorder is characterized by severe skeletal deformities, 
including PAP, cardiac anomalies, and facial dimorphism 
(3). EVC/EVC2 makes a complex with the smoothened, 
frizzled class receptor (SMO) and interacts with IQCE/
EFCAB7 at the base of primary cilia associated with the 
activation of GLI2, which further causes HH signaling 
activation (Figure 1D). Thus, EVC is mostly caused 
by impaired HH signaling pathways. EVC/EVC2 
inactivation does not affect the SMO phosphorylation or 
ciliary accumulation; however, it affects the GLI ciliary 
activation and localization. This suggests a key role of 
IQCE in the downstream HH signaling cascades (30). 
The discovery of cilia involvement has improved our in-
depth knowledge regarding the HH signaling pathway. 
Still, we lack a precise understanding of how these newly 
identified players/genes, such as FAM92A,  KIA0825, 
and  DACH1, interact and how these key proteins are 
associated with cilia trafficking and how their dis-
regulation leads to abnormal limb patterning.

Polydactyly in humans is a genetically and phenotypically 
heterogeneous disorder, as polydactyly is linked with 
syndromic and non-syndromic phenotypes. Syndromic 
types constitute 496 disorders searched in OMIM, 
including severe disorders such as Split-Hand/Foot 
Malformation, EVC, neurodevelopmental disorders, 
syndactyly, and many more (18,31-33). However, non-
syndromic types are few, but they help us understand the 
prevalence of the variants in a population and help us 
understand the pathophysiology of the disorder in detail. 
Thus, identifying novel genes implicated in congenital 
limb abnormalities is important to understand limb 
development in humans and help manage associated 
syndromic disorders. In addition, proper genetic 
counseling of the family having severe skeletal disorders 
might help eradicate the disorder in future poignancies. 
In addition, introducing the newborn screening program 
in a developing country like Pakistan will be the first step 
in screening some severe genetic disorders. Parenteral 
diagnosis can play a major role in reducing the burden of 
such severe disorders (34,35). This can be accomplished 
by prenatal genetic testing for monogenetic disorders 
(PGT-M). PGT and in vitro fertilization are options for 
parents wishing to have future pregnancies (36,37). In 
conclusion, we have presented an association of a splice 

site variant in IQCE with an isolated PAP in humans. This 
information will help researchers understand the intricate 
signaling cascades needed for proper limb orientation 
and development and will also help them prevent the 
pathogenesis of limb deformities.

List of Abbreviations
GLI Glioma-associated oncogene family zinc finger 1
HH Hedgehog
IQCE IQ domain-containing protein E
OMIM Online Mendelian Inheritance in Man
PAPA Postaxial polydactyly type A
SMO Smoothened, frizzled class receptor
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