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1. Introduction

Glutaric aciduria type I (GA1) is an autosomal recessive 
inherited metabolic disorder caused by mutations in the 
glutaryl-CoA dehydrogenase (GCDH) gene (OMIM 
#608801), which encodes an enzyme belonging to the 
acyl-CoA dehydrogenase family (1). The enzyme GCDH 
is active in mitochondria as a homotetramer and is 
involved in the metabolism of the amino acids L-lysine, 
L-hydroxylysine, and L-tryptophan, specifically 
catalyzing the dehydrogenation and subsequent 
decarboxylation of Glutaryl-CoA, a catabolite of amino 
acid metabolism, to glutaconyl-CoA and crotonyl-CoA, 
respectively (2). Deficiency o f G CDH e nzyme a ctivity 
due to various mutations leads to the accumulation of 
toxic metabolites glutaric acid, 3-hydroxyglutaric acid, 
and glutaconic acid in the blood, urine, and CSF and 
brain tissue thereby, resulting in the full clinical spectrum 
of GA1, including imbalances in neurotransmission and 
neurotoxic effect (3). Among GCDH related pathways 
are the super pathway of lysine, hydroxyl-lysine, and 
tryptophan utilization and metabolism (Figure 1). Flavin 
adenine dinucleotide binding and fatty-acyl-CoA binding 
are Gene Ontology annotations related to the GCDH gene 
and a number of interacting protein partners of GCDH are 
reported globally by different research groups (Figure 2). 
Clinically, neonates with GA1 may be asymptomatic but 
are usually presented with macrocephaly (4). Although

the severity of GA1 varies considerably and the signs 
and symptoms in most cases occur in infancy, some 
patients present with milder clinical phenotype, while 
others have severe problems. The severity of the clinical 
outcome in GA1 and prevention of the progression to 
severe neurological and non-neurological manifestations 
(5) implies that early definitive diagnosis of GA1 is
absolutely essential. To confirm the diagnosis promptly,
urine organic acid analyses are performed and increased
3-hydroxyglutaric acid with or without increased
glutaric acid will confirm GA1 (American College of
Medical Genetics and Genomics, ACMG-based New-
born screening ACT sheets and algorithms, https://www.
acmg.net/ACMG/Medical-Genetics-Practice-Resources/
ACT_Sheets_and_Algorithms). If urine organic acid
analyses are unremarkable, it could be followed by urine
glutarylcarnitine and blood and CSF 3-hydroxyglutaric
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acid analyses, and finally by enzyme assay in fibroblasts, 
and/or molecular analysis of the GCDH gene.

In Saudi Arabia, GA1 was among the first disorders 
included in the neonatal screening program (6) and 
therefore, can be appropriately managed once diagnosed 
early. The reason behind its inclusion in the program 
stems from the fact that 50%–60% of the marriages in 
Saudi Arabia are consanguineous that may even reach 
80% in some tribal areas (7,8). Moreover, since the 
incidence of GA1 is high among heavily consanguineous 
communities, such as the Amish and the Indians in 
Canada (9,10), it was assumed and rightly so, that 
autosomal recessive disorders, such as GA1 may occur 
with a high incidence in Saudi Arabia as well. Despite 
its inclusion in the Newborn screening (NBS) program 
and a few literature reports on GA1 from Saudi Arabia, 
a combinatorial literature review that includes clinical 
and laboratory-based investigations, including genetics 
is lacking. This review aims to fill these gaps with data 

from Saudi GA1 patients in addition to compiling a 
comprehensive list of all the Human Gene Mutation 
Database (HGMD) reported mutations in GCDH that 
could act as a useful resource for future studies.

2. Clinical manifestations

There is variability in the clinical presentation of GA1 
among patients, even between relatives, suggesting an 
interplay of genetics and environmental components. 
Macrocephaly at birth is the most common feature of 
GA1. Other clinical features in GA1 include progressive 
dystonic cerebral palsy, frontotemporal atrophy, acute 
infantile encephalopathy associated with an upper 
respiratory and/or gastrointestinal infection, dystonia 
affecting the upper and lower limbs, face, neck, and 
trunk, hyperkinetic disorder, basal ganglia degeneration, 
and sudden death (11–15). Some patients may develop 
bleeding in the brain and eyes (16). In 60%–70% of 
patients with GA1, no neurodegenerative disease occurs 

Figure 1. Catabolism of lysine, hydroxyl-lysine and tryptophan through GCDH pathway.

Figure 2. STRING interaction network of GCDH showing its interaction with protein partners (GeneCards).



Glutaric aciduria type 1

42

if appropriate treatment is given. However, neurological 
manifestations may begin as early as 6 months of age 
or as late as 35 years or more even though the patients 
present with macrocephaly (17). Acute neurological 
symptoms are triggered either by fever with some 
degree of dehydration or sometimes without any trigger 
leading to hypotonia, head control loss, and abnormal 
movements similar to seizures (18). Some patients may 
require a nasogastric tube or a permanent gastrostomy 
tube/button for feeding due to dystonia and decreased 
coordination of swallowing. Infants with GA1 may 
also develop acute striatal lesions or chronic striatal 
atrophy, thereby leading to permanent disability (19). 
Our own experience with GA1 patients (20) revealed 
neurodegenerative symptoms with recurrent chest 
infections, ischemic brain injury, bilateral subdural 
collections, and atrophy (Figure 3). GA1 clinical 
manifestations such as cerebral atrophy, cyst-like 
dilatation of the Sylvian fissures with “batwing” or 
“box-like” fissures, and basal ganglia atrophy are 
accompanied by subdural hemorrhages as the disease 
progress as revealed by brain imaging (21–23).

3. GA1 in the Kingdom of Saudi Arabia

Due to the dearth of literature on GA1 from Saudi Arabia, 
the current review was able to retrieve only a limited 
number of publications using the PubMed database. 
The first study on GA1 by Coates et al. (24) included 
only three patients (one, a 7-month old male, second, a 
20-month old female and third, a 12-month male), which 
were initially diagnosed as cases of postmeningitic or 
post-traumatic progressive encephalopathy. Although 
normal at birth with expected milestones, the authors 
state that children developed hypotonia, seizures, 
and neurological symptoms, and were diagnosed as 
GA1 based on computed tomography (CT) and brain 
imaging studies (24). The clinical phenotype at the 
presentation in all the three cases was variable. The first 
had normal tendon reflexes and no dystonia, the second 
case had a fever, gastroenteritis, dystonic posturing, 
choreoathetosis, and spastic quadriplegia, and the third 
case had fever, vomiting, diarrhea, focal seizure involving 
left side of the body, and face with positive Babinski 
sign (24). Mohamed et al. (25,26) described one Saudi 
GA1 patient who presented with developmental delay, 
choreoathetosis, and myoclonic seizures and the other 
with dystonia, misdiagnosed as cerebral palsy, and to have 
GA1. The authors suggest pediatricians consider GA1 as 
a differential diagnosis in patients with dystonic cerebral 
palsy to prevent neurological damage (26). Al-Essa et 
al. (27) have described a series of seven patients with 
GA2, who had the distinct clinical phenotype. Alfadhel 
et al. (28) have recently reported an expanded newborn 
screening program in Saudi Arabia, and they reported 
three cases of GA1. The authors of the current study also 
had recently reported an 11-month old Saudi GA1 case 
with developmental regression, hepatosplenomegaly, 
seizure disorder, oropharyngeal swallowing problems, 
and recurrent chest infections (20).

4. Diagnosis

During the diagnostic workup for patients suspected with 
GA1, clinical examination is followed by brain imaging 
and laboratory investigations, including biochemical and 
molecular genetic testing. At the time of presentation, 
carnitine levels in plasma may be mildly or severely 
decreased. Other laboratory investigations may reveal 
hypoglycemia, ketonuria, and metabolic acidosis with 
decreased bicarbonate levels. The authors believe that the 
multi-parametric approach is the best option in GA1 work-
up and some of the important assessments include:

4.1 Newborn screening

Although some patients may excrete normal levels 
of organic acids such as glutarylcarnitine (C5 
dicarboxyliccarnitine: C5-DC), elevated levels can be 
identified by NBS or by more sensitive high-performance 
liquid chromatography/Tandem MS-based technologies. 
For a definitive diagnosis, abnormal NBS results may need 
to be subsequently confirmed first by biochemical testing 
followed by either enzyme assay in cultured fibroblasts 
and/or mutation analyses (29,30). NBS helps not only 
to achieve the diagnosis of GA1 earlier but also impacts 
long-term implications by allowing earlier treatment 
management before the onset of symptoms. It has been 
demonstrated (31) by statistical modeling that GA1 patients 
identified by NBS show improved motor development and 
neurological outcome than selective screening group (71% 
vs. 29%). In addition, the manifestation of a movement 
disorder was significantly reduced in the NBS compared 
with selective screening group (74% vs. 26%). Thus, long-
term effects of NBS are clear with a major beneficial effect 
for neurological outcome parameters.

4.2 Biochemical studies

In the event of positive NBS result, the family of the patient 
must be immediately informed and confirmatory testing 
should be initiated as recommended by the pediatric 
metabolic specialist. Urine organic acid analysis by tandem 
mass spectroscopy (MS), MS/MS and gas chromatography 
(GC/MS) is the method of choice for all the diagnostic 
laboratories dealing with GA1. Increased glutarylcarnitine, 
glutaconic acid in some patients, and the high excretion of 
ketone bodies and lactic acid in the urine are indicative of 
GA1. If urine organic acid analyses are unremarkable, it 
could be followed by urine glutarylcarnitine and blood and 
CSF 3-hydroxyglutaric acid Glutarylcarnitine (C5-DC) 
levels in the blood as measured by Tandem MS, MS/MS 
analyses, and finally by enzyme assay in fibroblasts, and/
or molecular analysis of the GCDH gene. The diagnostic 
workup of patients with suspected GA1 is shown [Figure 
4, source American College of Medical Genetics (ACMG) 
ACT sheet and algorithm].

4.3 Medical imaging

In children with suspected GA1, magnetic resonance 
imaging (MRI) of the brain is the first choice. Cerebral 
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atrophy and cyst-like dilatation of the Sylvian fissures 
with “batwing” or “box-like” fissures are often early 
findings in GA1 (20,21). Cranial sonography and CT have 
demonstrated similar findings (32,33). Brain imaging is 
also used to reveal severe leukoencephalopathy, dilatation 
of the insular cisterns, regression of the temporal lobes, 
and hypodensity of the lenticular nuclei (34).

4.4 Molecular genetic analyses

GA1 is caused by mutations in the GCDH gene that map 
to chromosome 19p13.2 with 12 exons encoding 438 
amino acid proteins (NM_000159.2; NP_000150.1). 
In fact, more than 200 different types of mutations that 
include missense/nonsense, splicing, small deletions, 

Figure 4. Algorithm in the diagnostic work-up of GA1 (source ACMG).

Figure 3. Brain MRI images in a patient with GA1 showing bilateral subdural collections and atrophy.
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Table 1. GCDH mutations reported in the literature (HGMD source with references).

GCDH Missense Mutations

Variant Variant

Literature reference

Variant Variant

Literature reference(nucleoti 
de change)

(amino acid 
change)

(nucleoti de 
change)

(amino acid 
change)

c.227A>C p.Q76P Abdul Wahab (2016) 
Biomed Res Int 
2016, 4074365

c.1A>G p.M1? Boy (2018) Ann 
Neurol 83, 970

c.392A>T p.E131V c.148T>G p.W50G
c.892G>A p.A298T c.240G>C p.M80I
c.1168G>T p.G390W c.238A>C p.M80L
c.278A>G p.H93R Alfadhel (2016) 

Orphanet J Rare  
Dis 11, 126

c.299T>C p.M100T

c.242C>T p.P81L Al-Shamsi (2014)  
Sultan Qaboos Univ 
Med J 14, e42

c.380C>T p.A127V

c.427G>A p.V143I c.481C>T p.R161W

c.301G>A p.G101R Anikster (1996) Am J 
Hum Genet 59, 1012

c.510G>C p.K170N

c.848T>C p.L283P c.511G>T p.G171W
c.914C>T p.S305L c.538A>G p.T180A

c.1168G>C p.G390R c.553G>A p.G185R
c.1247C>T p.T416I c.561C>A p.D187E
c.883T>C p.Y295H Biery (1992) Am 

J Hum Genet 51S 
A165

c.641C>T p.T214M

c.262C>T p.R88C c.682T>C p.C228R
c.532G>A p.G178R c.764C>G p.S255W
c.680G>C p.R227P c.881G>A p.R294Q
c.877G>A p.A293T c.967G>T p.G323C

c.1093G>A p.E365K c.1127G>A p.G376E
c.1156C>T p.R386* c.1133C>T p.A378V
c.1198G>A p.V400M c.1153G>A p.A385T
c.1204C>T p.R402W c.1163T>C p.M388T
c.1240G>A p.E414K c.1189G>A p.E397K
c.1262C>T p.A421V c.1225G>A p.A409T
c.727C>G p.R243G Bijarnia (2008) J 

Inherit Metab Dis 31, 
503 c.1239C

c.1239C>G p.Y413*

c.733C>T p.L245F c.1243G>A p.G415S
c.1274G>T p.G425V c.1249C>T p.H417Y
c.394C>G p.R132G Boy (2017) Orphanet 

J Rare Dis 12, 77
c.1253A>T p.D418V

c.1169G>T p.G390V Busquets (2000) Mol 
Genet Metab 71, 535

c.467G>T p.G156V Chalmers (2006) Mol 
Genet Metab 88, 29

c.1317A>G p.*439W c.148T>C p.W50R Chen (2011)  
Zhonghua Yi Xue Yi 
Chuan Xue Za Zhi 
28, 374

c.212T>C p.F71S c.263G>A p.R88H

Continued
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GCDH Missense Mutations

Variant Variant

Literature reference

Variant Variant

Literature reference(nucleoti 
de change)

(amino acid 
change)

(nucleoti de 
change)

(amino acid 
change)

c.268G>A p.E90K c.371G>A p.G124E
c.356C>T p.S119L c.1169G>A p.G390E
c.382C>T p.R128* c.658G>A p.D220N Couce (2013) Eur J 

Paediatr Neurol 17, 
383

c.463T>C p.Y155H c.1193A>G p.Y398C
c.541G>A p.E181K c.542A>G p.E181G Crombez (2008) Mol 

Genet Metab 94, 132

c.764C>T p.S255L c.683G>T p.C228F
c.910G>A p.A304T c.192G>T p.E64D Georgiou (2014) Clin 

Biochem 47, 1300

c.947C>A p.A316D c.803G>T p.G268V
c.1115G>A p.R372K c.478C>T p.Q160* Park (2010) J Korean 

Med Sci 25, 957

c.1298C>T p.A433V c.658G>T p.D220Y
c.344G>A p.C115Y Goodman (1998) 

Hum Mutat 12, 141
c.1147C>A p.R383S Shadmehri (2018) J 

Cell Biochem

c.365C>T p.A122V c.281G>A p.R94Q Gupta (2015) JIMD 
Rep 21, 45

c.382C>G p.R128G c.401A>G p.D134G
c.412A>G p.R138G c.662T>C p.L221P
c.416C>T p.S139L c.881G>C p.R294P
c.536T>G p.L179R c.1238A>G p.Y413C
c.706T>C p.F236L c.1241A>C p.E414A
c.796A>G p.M266V c.373C>T p.L125F Han (2017) Zhonghua 

Er Ke Za Zhi 55, 539

c.923G>C p.C308S c.493C>A p.L165M
c.926T>G p.L309W c.767T>C p.L256P
c.937C>T p.R313W c.479A>G p.Q160R Höliner (2010) Klin 

Padiatr 222, 35

c.997C>G p.Q333E c.1015A>G p.M339V Ikeda (1998) Am J 
Med Genet 80, 327

c.1060G>C p.G354R c.728G>A p.R243Q Jin (2017) Nat Genet 
49, 1593

c.1063C>T p.R355C c.922T>C p.C308R Kim (2014) Ann Clin 
Lab Sci 44, 213

c.1123T>C p.C375R c.245G>C p.R82P Lin (2018) Zhonghua 
Yi Xue Yi Chuan Xue 
Za Zhi 35: 39

c.1144G>A p.A382T c.798G>T p.M266I Madruga-Garrido 
(2007) Rev Neurol 
45, 127

c.1147C>T p.R383C c.1021A>C p.T341P Korman (2007) Eur 
J Paediatr Neurol 
11, 81

c.1148G>A p.R383H c.1175A>G p.N392S
c.1157G>A p.R386Q c.1213A>G p.M405V

Continued
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GCDH Missense Mutations

Variant Variant

Literature reference

Variant Variant

Literature reference(nucleoti 
de change)

(amino acid 
change)

(nucleoti de 
change)

(amino acid 
change)

c.1169G>C p.G390A c.713T>C p.L238P Lin (2002) Prenat 
Diagn 22, 725

c.1174A>G p.N392D c.533G>A p.G178E
c.1205G>A p.R402Q c.1054C>T p.Q352* Martinez Granero 

(2005) Neurologia 
20, 255

c.1208A>G p.H403R c.148T>A p.W50R Mosaeilhy (2017) 
Metab Brain Dis 32, 
1417

c.1218C>G p.N406K c.158C>A p.P53Q
c.1220T>C p.L407P c.1189G>T p.E397*
c.1261G>A p.A421T c.1284C>G p.I428M
c.508A>G p.K170E Wen (2012)  

Zhonghua Yi Xue Yi 
Chuan Xue Za Zhi 29,

c.797T>C p.M266T Wen (2012)  
Zhonghua Yi Xue Yi 
Chuan Xue Za Zhi 
29, 642

c.655G>A p.A219T Tang (2000) Hum 
Mutat 16, 446

c.873C>A p.N291K Tsai (2017) J Chin 
Med Assoc 80, 253

c.1156C>G p.R386G c.176A>C p.Q59P van der Watt (2010) 
Mol Genet Metab 
101, 178

c.215G>T p.R72L Mushimoto (2011) 
Mol Genet Metab 
102, 343

IVS1 ds G-T +5 c.91+5G>T Greenberg (1995) 
Hum Mol Genet 4, 
493

c.464A>G p.Y155C IVS2 as A-T -2 c.128-2A>T Zschocke (2000) J 
Med Genet 37, 177

c.556A>T p.S186C IVS3 ds G-A +1 c.271+1G>A Tang (2000) Hum 
Mutat 16, 446

c.730G>A p.G244S IVS4 ds G-T -1 c.334G>T Zhang (2016) Clin 
Chim Acta 453, 75

c.1061G>C p.G354A IVS4 ds T-C +2 c.334+2T>C Mushimoto (2011) 
Mol Genet Metab 
102, 343

c.1081A>G p.K361E IVS4 ds G-A +5 c.334+5G>A Goodman (1998) 
Hum Mutat 12, 141

c.1237T>G p.Y413D IVS5 ds G-A +1 c.505+1G>A Xiong (2015)  
Science 347

c.1219C>G p.L407V Pierson (2015)  
Neurogenetics 16, 325

IVS6 as G-A -1 c.636-1G>A Xiong (2015)  
Science 347

c.730G>T p.G244C Pirzadeh (2017) Iran 
J Child Neurol 11, 58

IVS7 as A-G -2 c.853-2A>G Alfadhel (2016) 
Orphanet J Rare Dis 
11, 126

c.1118A>G p.N373S IVS7 ds G-A +5 c.852+5G>A Bijarnia (2008) J 
Inherit Metab Dis 31, 
503

c.674G>A p.W225* Radha Rama Devi 
(2016) Brain Dev 
38, 54

IVS10 as A-G -11 c.1244-11A>G Abdul Wahab (2016) 
Biomed Res Int 2016

Continued
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GCDH Missense Mutations

Variant Variant

Literature reference

Variant Variant

Literature reference(nucleoti 
de change)

(amino acid 
change)

(nucleoti de 
change)

(amino acid 
change)

c.856C>T p.P286S IVS10 as A-C -2 c.1244-2A>C Chen (2018)  
Zhonghua Yi Xue Yi 
Chuan Xue Za

c.1228G>A p.V410M IVS10 as A-G -2 c.1244-2A>G Fraidakis (2015) 
JIMD Rep 18, 85

c.397G>T p.V133L Schillaci (2016) Mol 
Genet Metab 119, 50

IVS10 ds G-C +1 c.1243+1G>C Schwartz (1998) 
Hum Genet 102, 452

c.521T>C p.L174P GCDH Small Deletion Mutations

c.997C>T p.Q333* c.11delG p.(Arg4Lysfs*8) Crombez (2008) Mol 
Genet Metab 94, 132

c.281G>T p.R94L Schwartz (1998) 
Hum Genet 102, 452

c.90delC p.(Glu31Argfs*30) Mushimoto (2011) 
Mol Genet Metab 
102, 343

c.442G>A p.V148I c.109_110delCA p.(Gln37Glufs*5) Tsai (2017) J Chin 
Med Assoc 80, 253

c.482G>A p.R161Q c.146_149delACTG p.(Asp49Glyfs*11) Wen (2012)  
Zhonghua Yi Xue Yi 
Chuan Xue Za

c.572T>C p.M191T c.158delC p.(Pro53Argfs*8) Goodman (1998) 
Hum Mutat 12, 141

c.583G>A p.A195T c.219delC p.(Tyr74Thrfs*68) Boy (2017) Orphanet 
J Rare Dis 12: 77

c.770G>A p.R257Q c.387_388delGC p.(Glu129Aspfs*58) Busquets (2000) 
Pediatr Res 48, 315

c.769C>T p.R257W c.420_429del10 p.(Met141Serfs*80) Wen (2012)  
Zhonghua Yi Xue Yi 
Chuan Xue Za

c.832C>T p.P278S c.485delA p.(Gln162Argfs*62) Radha Rama Devi 
(2016) Brain Dev 
38, 54

c.880C>T p.R294W c.553_570del18 p.(Gly185_Ser190de Bross (2012) J Inherit 
Metab Dis 35, 787

c.1045G>A p.A349T c.636-
3_639delCAGG

p.(?) Shu (2003) J Formos 
Med Assoc 102, 729

c.1060G>A p.G354S c.636-
4_639delCCAG

p.(?) Wen (2012)  
Zhonghua Yi Xue Yi 
Chuan Xue Za

c.1064G>A p.R355H c.848delT p.(Leu283Argfs*8) Pierson (2015)  
Neurogenetics 16: 325

c.1286C>T p.T429M c.873delC p.(Asn291Lysfs*41) Wang (2014) Brain 
Dev 36, 813

c.1298C>A p.A433E c.877delG p.(Ala293Profs*39) Chen (2011)  
Zhonghua Yi Xue Yi 
Chuan Xue Za

c.787A>G p.M263V Muhlhausen (2003) 
J Inherit Metab Dis 
26, 713

c.1144_1145delGC p.(Ala382Profs*14) Mushimoto (2011) 
Mol Genet Metab 
102, 343

c.431A>C p.Q144P Tp (2017) J Pediatr 
Genet 6, 142

c.1161_1174del14 p.(Asp387Glufs*5) Schwartz (1998) 
Hum Genet 102, 452

c.456C>G p.I152M c.1173delG p.(Asn392Metfs*9) Anikster (1996) Am J 
Hum Genet 59, 1012

Continued
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small insertions, indels, and intronic variants are known 
in GCDH1 (Table 1) (35). Consequently, molecular 
genetic testing plays a confirmatory role in the diagnosis 
of GA1. The most common mutation occurring in the 
GCDH gene is R402W in exon 10 that accounts for less 
than 20% of mutations and the mutation retains only 
about 3% enzyme activity (1). The current study authors 
have previously reported mutation c.482G > A; p.R161Q 
in one of the patients with GA1 (20). While polymerase 
chain reaction and Sanger sequencing-based techniques 
could identify targeted mutations in the GCDH gene, 
next-generation sequencing-based methods that include 
whole exome sequencing is increasingly being utilized 

(36–39) for disorders with allelic heterogeneity and 
could potentially be used as a discovery tool in GA1 for 
identifying novel allelic variants.

5.Management

5.1 Dietary and emergency management

Clinically GA1 could be kept symptom-free when 
treated and managed during the neonatal period (40). 
In contrast, delayed diagnosis and the appearance of 
neurologic manifestations may lead to poor clinical and 
therapeutic outcome although neurologic deterioration 

GCDH Missense Mutations

Variant Variant

Literature reference

Variant Variant

Literature reference(nucleoti 
de change)

(amino acid 
change)

(nucleoti de 
change)

(amino acid 
change)

c.1240G>T p.E414*
c.157C>T p.P53S Viau (2012) Mol 

Genet Metab 106, 
430

c.578_579insTCA Korman (2007) Eur 
J Paediatr Neurol 
11, 81

c.437C>A p.S146Y c.646_649dupTCGC Moseilhy (2017)  
Metab Brain Dis 32, 35

c.640A>G p.T214A c.1172_1173insT Wang (2014) Brain 
Dev 36, 813

c.833C>G p.P278R c.1173dupG Gupta (2015) JIMD 
Rep 21, 45

c.905T>C p.L302P GCDH Indel Mutations

c.1022C>T p.T341I c.588_589delCTinsTCCA Boy (2018) Ann  
Neurol 83, 970

c.150G>C p.W50C Zschocke (2000) J 
Med Genet 37, 177

GCDH Missense Mutations

c.226C>T p.Q76* c.406G>T p.G136C Wang (2014) Brain 
Dev 36, 813

c.337T>C p.Y113H c.411C>G p.Y137*
c.383G>A p.R128Q c.416C>G p.S139W
c.395G>A p.R132Q c.901G>A p.V301M
c.397G>A p.V133M c.979G>A p.A327T
c.413G>A p.R138K c.1207C>T p.H403Y
c.526T>C p.C176R c.628A>G p.K210E
c.541G>C p.E181Q c.700C>T p.R234W
c.554G>C p.G185A c.731G>T p.G244V
c.650C>T p.P217L c.963G>C p.Q321H
c.743C>T p.P248L c.1031C>T p.T344I
c.775T>C p.S259P c.1109T>C p.L370P
c.938G>A p.R313Q c.1239C>A p.Y413* Zschocke (2000) J 

Med Genet 37, 177

c.1154C>T p.A385V
Various mutations in GCDH are categorized based on the nature of change (deletion, insertion, etc.) and/or structural effect on protein 
amino acid (missense, nonsense, splicing, etc.). Mutation nomenclature is based on the recommendations by HGVS (http://www.HGVS.
org/mutnomen).
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Table 2. Treatment protocol in patients with GA1 (based on guidelines by Koeller et al. (2011).

Inpatient emergency management protocol (birth up to 6 years)

1. Intravenous infusion IV
Age group (years) Glucose
0–1 12–15
1–3 10–12
3–6 8–10

Intravenous infusion IV Insulin
If hyperglycemia
Above 150–180 mg/dl (>8–10 mmol/l) 0.025–0.05
or glucosuira developed

2. Protein intake
Natural protein Discontinue for 24 hours

Introduce again for 2–3 days
3. Medication

L-carnitine 100 mg/kg per day IV
Antipyretic above 38.5°C (ibuprofen or paracetamol) 10–15 mg/kg/dose three to four times per day
Sodium bicarbonate

4. Monitoring
Clinical Vital signs

Input-output chart
Neurological assessment -Glasgow Coma Scale

Laboratory Blood glucose, blood count, blood culture (if infection)
Blood gases., Electrolytes
Creatinine level
Amino acids, carnitine, creatinine, C-reactive protein
Urine ketone bodies and pH

Outpatient emergency management protocol (beyond 6 years)
1. Maintenance Management

Dietary management up to 6 years Low lysine diet (calculated daily requirement)

Tryptophan-reduced amino acid mixtures
Combined with creatinine supplementation

Dietary management above 6 years Controlled protein intake using natural protein
Low lysine content and avoiding food with a high content of 
lysine

2. Medication
Carnitine supplement Reduce risk for striatal injury
Riboflavin No clear evidence or standardized protocol
Baclofen Treatment of movement disorders
Benzodiazepines-diazepam and clonazepam Positive effects in the majority of symptomatic patients
Anticholinergic drugs-Trihexyphenidyl For dystonia
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may be overcome in some patients (41–43). When NBS 
result is positive or GA1 is suspected during the clinical 
examination after urine analyses, for example, treatment 
is recommended immediately to prevent metabolic crisis 
or neurological squall. Initiation of early treatment during 
the newborn period prevents symptoms in the majority 
of the patients (~90%). During a metabolic crisis, 
appropriate emergency management includes a low-
lysine diet with carnitine supplementation to allow for 
the normal growth (44). Patients who follow maintenance 
therapy management recommendations rarely develop 
dystonia, and patients who are noncompliant to 
maintenance or emergency treatment develop dystonia 
to about 44% or 100%, respectively (45). Revised 
recommendations for the diagnosis and management of 
GA1 have been published by Boy et al. (46). In case of no 
alarming clinical crisis, such as consciousness, vomiting, 
and dystonia, home management for up to 12 hours 
and reassessment after every 2 hours is recommended 
followed by maintenance treatment. Maintenance 
treatment may involve dietary management to reduce 
lysine intake or medication. In order to avoid the less 
prominent clinical effect, the daily requirement of lysine 
should be calculated accurately (47). Strict adherence to 
the protocol has shown favorable neurological outcome 
in most studies (48–51). Maltodextrin solutions or 
comparable carbohydrate supplementations can be given 
orally or through NGT as appropriate.

GA1 patients presenting with encephalopathic crises 
require aggressive emergency management protocol 
since maintenance treatment by itself is not sufficient 
to overcome the metabolic crisis, and delayed treatment 
initiation may lead to striatal injury and dystonia. It is, 
therefore, recommended to start the emergency protocol 
as soon as possible with minimal clinical suspicion and 
intensified according to the need (52–54). The objective 
of this aggressive protocol is to reverse the metabolic 
crises, decrease neurotoxic metabolite production, and 
enhance physiological detoxification mechanisms. Since 
the acute crisis is significantly reduced beyond 6 years of 
age and subclinical cerebral insult cannot be excluded, 
the threshold to start emergency treatment should be low 
in this age group. The emergency management protocol 
(in-patient and out-patient) guidelines in practice (46) are 
summarized (Table  2), and the differences in the protocol 
depend upon the clinical status of the patient. The use of 
antipyretics is recommended when the body temperature 
is above 38.5°C. In the case of movement disorder 
and dystonia phenotype, appropriate medications are 
recommended (55) (Table 2).

5.2 Neurological complications management

Dystonia and epilepsy are the two major neurological 
complications in patients with GA1. A number of dystonia 
rating scales, such as the Bary-Albright, the Burke-Fahn-
Marsden, and the gross motor function classification 
system have been proposed to assess the severity of 
neurological conditions (56,57). Despite the challenges 

in treating GA1-dystonia, drug therapy using specific 
drugs such as Baclofen together with Benzodiazepines 
(Diazepam and Clonazepam), Zopiclone, Anticholinergic 
drugs Trihexyphenidyl, and Botulinum toxin type A have 
been effectively used (55). The use of antiepileptic drugs 
in patients with GA1 should be based on individual 
assessment. Although the outcome has been poor, 
neurosurgery (pallidotomy) and deep brain stimulation 
remain an option for improvement of dystonia (58).

5.3 Long-term management

For long-term management of patients with GA1 to ensure 
the effectiveness of treatment, compliance, prevention 
of neurological complications and possibly early death, 
clinical monitoring, and transitional care concept must 
be adopted. Clinical monitoring may involve but is 
not restricted to, dietary components, neurological 
evaluation, psychological tests, and developmental 
milestones. On the other hand, transition care could 
involve an interdisciplinary team of experts consisting 
of metabolic experts, nutritionists, psychologists, 
neurologists, pediatricians, and social workers (59).

6. Animal Model of GA1

A knock-out mouse model of GA1 (GCDH −/− mice) 
was developed by Koeller et al. (60) via the GCDH gene 
targeting technology in embryonic stem cells. Although 
the biochemical phenotype and pathology of the GCDH 
−/− mice were similar to that seen in patients however, the 
knock-out mice failed to show any neurological phenotype 
observed in GA1 patients. The authors attribute this 
effect to intrinsic differences between the striata of mice 
and humans. When the GCDH −/− mouse was exposed 
to high protein or lysine diet, it resulted in vasogenic 
edema, neuronal loss, hemorrhage, paralysis, seizures, 
and death within days resembling human GA1 (61). 
GCDH −/− mouse was susceptible to encephalopathy and 
brain injury after exposure to dietary protein (62). These 
studies demonstrated the involvement of mitochondrial 
disruption in age-dependent brain injury of GA1.

7. Conclusion

In conclusion, GA1 as a disease is not well studied in Saudi 
Arabia from a research perspective. Since neurological 
manifestations can be permanent and devastating, future 
studies in Saudi Arabia are needed to investigate the 
prevention and targeting strategies, long-term outcome, 
and treatment monitoring. The establishment of GA1 
focus-research groups that should aim to combine 
basic science with clinical research using modern high-
throughput technologies, such as whole genome and/or 
whole exome approaches, is the way forward.
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