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Pan-cancer analysis of TP53 expression:
prognostic significance and identification
of diagnostic and prognostic biomarkers in
hepatocellular carcinoma

Amna Atia®” ®, Mohamed Alfaki?

ABSTRACT

Background: Hepatocellular carcinoma (LIHC) is a common and aggressive liver malignancy, often diagnosed
at advanced stages. Dysregulation of the TP53 tumor suppressor gene, critical for cell cycle control, apoptosis,
and genomic stability, is frequently observed in LIHC; however, its prognostic value remains uncertain.

Objectives: To investigate TP53 expression levels, prognostic relevance, and molecular interactions in LIHC
within a broader pan-cancer context.

Methods: Publicly available datasets from The Cancer Genome Atlas and Gene Expression Omnibus were
analyzed. TP53 differential expression was evaluated using TIMER 2.0, Gene Expression Profiling Interactive
Analysis (GEPIA), and UALCAN Online Cancer Data Analysis Tool (UALCAN). Survival analysis was performed
via Kaplan-Meier Plotter, GEPIA, and UALCAN. Genomic alterations were assessed through cBioPortal. Gene
expression validation was conducted using GEO2R and ggplot2. Protein—protein interaction networks were
constructed using STRING and GeneMANIA.

Results: TP53 Messenger Ribonucleic Acid expression was significantly elevated in LIHC tumor tissues com-
pared to normal liver tissues (p < 0.05). Promoter hypo-methylation was noted in tumor samples, potentially
contributing to this up-regulation. Survival analysis revealed conflicting findings: Kaplan-Meier Plotter asso-
ciated high TP53 expression with better prognosis (HR = 0.65, p = 0.029), whereas GEPIA and UALCAN linked
high expression with poorer outcomes. Furthermore, TP53 expression positively correlated with immune cell
infiltration and advanced clinical stage, suggesting a complex role in tumor progression.

Conclusion: TP53 demonstrates a dual, context-dependent role in LIHC, acting as both a tumor suppressor
and a potential oncogenic driver. Its variable expression patterns and inconsistent prognostic associations
highlight its potential as a diagnostic and prognostic biomarker and support the need for further functional
and clinical validation.

Keywords: TP53, hepatocellular carcinoma, prognosis, Gene expression, tumor suppressor, immune microen-
vironment, bioinformatics.
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Hepatocellular carcinoma (LIHC) represents a major
global health burden, ranking as the fifth most common
cancer in men and the seventh in women (1). This life-
threa}tenlr}g malignancy, marked by the uncontrolled Full list of author information is available at the end of
proliferation of hepatocytes, frequently develops S

in individuals with chronic liver conditions such as Received: 02 May 2025 | Revised (1): 12 July 2025 | Revised
cirrhosis and viral hepatitis. The poor prognosis of LIHC (2): 5 September 2025 | Accepted: 09 October 2025

is primarily due to late-stage diagnosis; over 80% of
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cases are inoperable, leaving only 10%-20% of patients
eligible for curative treatment (2).

TP53 is a well-established tumor suppressor gene, often
referred to as the “guardian of the genome,” due to its
essential roles in preserving genomic stability, regulating
cell cycle progression, and initiating apoptosis in response
to cellular stress. Mutations in TP53 are a hallmark of
numerous human cancers, including LIHC (3). These
alterations disrupt its tumor-suppressive functions,
contributing to unchecked cellular proliferation,
resistance to apoptosis, and therapeutic failure (4). In
addition to mutations, TP53 function can be modulated
by mechanisms such as altered Messenger Ribonucleic
Acid (mRNA) expression and changes in protein stability,
further complicating its role in oncogenesis.

The high frequency of TP53 alterations in LIHC
underscores the need for improved molecular
diagnostic and prognostic tools (5). This study aimed
to comprehensively examine TP53 gene expression and
its prognostic relevance in LIHC, alongside a broader
pan-cancer analysis to contextualize TP53 dysregulation
in other malignancies such as lung and breast cancer.
We utilized publicly available datasets from The
Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO), leveraging their large sample sizes
and comprehensive genomic profiles. Furthermore, the
STRING database (6) was employed to explore protein—
protein interaction (PPI) networks, offering insights into
the functional context of TP53 in cancer.

Specifically, we hypothesized that: (i) TP53 expression is
significantly dysregulated in LIHC compared to normal
liver tissue; (i1) TP53 expression correlates with clinic-
pathological features of LIHC; and (iii) TP53 expression
is associated with patient survival outcomes. These
findings are anticipated to support the development of
improved prognostic strategies and potential therapeutic
targets for LIHC and related cancers.

Materials and Methods

Transcriptional expression analysis of the TP53
Gene using databases

This study employed a multi-platform bioinformatics
approach to investigate the expression and prognostic
significance of the TP53 gene in LIHC. The study aims
to use the TP53 as a potential diagnostic and prognostic
biomarker.

Data sources and analysis

TP53 is a tumor suppressor gene frequently mutated
in various cancers, including LIHC. This study aims
to investigate the role of TP53 in LIHC by analyzing
its differential expression, prognostic significance, and
interaction networks. The general workflow was to first
analyze differential expression and immune infiltration
using TIMER 2.0, then validate the expression and
survival using Gene Expression Profiling Interactive
Analysis (GEPIA) and UALCAN Online Cancer Data
Analysis Tool (UALCAN). The Kaplan-Meier plotter was
then used for further survival analysis. cbioportal was used
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to examine genetic alterations. GEO2R and ggplot2 were
used to validate expression changes. Finally, Gene MANIA
and STRING were used to examine PPI networks.

1. Tumor immune estimation resource (TIMER 2.0)

The TIMER 2.0 platform was utilized to analyze the
differential expression of the TP53 gene between the
tumor and adjacent normal tissues across all TCGA
cancer types. Furthermore, TIMER 2.0 was employed
to estimate the infiltration levels of six key immune cell
types (B cells, CD4+ T cells, CD8+T cells, neutrophils,
macrophages, and dendritic cells) within the LIHC tumor
microenvironment (3).

2. Gene expression profiling interactive analysis
(GEPIA)

The GEPIA database was used to analyze the RNA-
seq expression data of the TP53 gene in LIHC from the
TCGA-LIHC and GTEx datasets. GEPIA was employed
to assess differential TP53 gene expression, generate
overall survival (OS) curves, and explore correlations
between TP53 expression and clinical parameters. OS
data was obtained, and hazard ratios were compared using
the log-rank test. A p-value < 0.05 was considered (7).

3. University of Alabama at Birmingham Cancer
Data Analysis Portal UALCAN

UALCAN was used to explore OS, promoter TP53 DNA
methylation levels, and analyze TP53 gene expression
in relation to various clinicopathological parameters,
including age, race, gender, cancer stages, and mutation
status. A p-value < 0.05 was considered statistically
significant (8).

4. Kaplan-meier plotter

The Kaplan-Meier plotter was used to generate survival
curves for LIHC patients based on high and low TP53
gene expression levels. The cut-off values for high and
low expression were determined using the default median
cut-off method provided by the Kaplan-Meier plotter.
Specific gene probe information was also obtained from
the website (9).

5. cBioPortal for cancer genomics

The cBioPortal for Cancer Genomics was used to explore
genetic alterations of the TP53 gene across diverse cancer
types within the TCGA datasets (10).

6. Validation of TPS3 expression using ggplot2

Public gene expression datasets GSE101685 and
GSE138178 from the National Center for Biotechnology
Information GEO were analyzed using the GEO2R tool
(https://www.ncbi.nlm.nih.gov/geo/geo2r). Differential
gene expression analysis was performed to identify genes
significantly altered in LIHC. The criteria for differential
expression were a log2 fold change [Log2FC| > 1 and an
adjusted p-value < 0.05. Volcano plots were generated
using the ggplot2 R package (version 3.3.6) in R (version
4.3.2) to visualize the results (11).

7. Gene MANIA analysis

Gene MANIA (http:/genemania.org/) was used to
analyze the PPI network of TP53, exploring physical
gene interactions, prediction, gene co-expression, co-



localization, genetic interactions, pathways, and shared
protein domains. The term “TP53” was entered, and the
top 20 gene networks were visualized (12). The biological
significance of the genes found within this network will
be discussed in the results section.

8. STRING analysis

The STRING database was used to analyze the PPI
network of TP53. The analysis parameters were set
to: network type (full STRING network), meaning
of the network edges (evidence), active interactors
sources (all), minimum required interaction score (low
confidence, 0.150), and maximum number of interactors
for display (no more than 10 interactors). The use of low
confidence was used to capture a wider range of potential
interactions. Further discussion of the confidence score
will be addressed in the discussion section (6).

Potential biases and limitations

It is important to acknowledge that TCGA data, while
comprehensive, may exhibit biases related to patient
selection and data collection. The GEO datasets used can
also introduce biases, related to the specific parameters
of the original experiments.

Results

Pan-cancer analysis of differential TP53
expression

The differential expression of TP53 across various
cancer types was examined using the TIMER, GEPIA,
and UALCAN databases. 7P53 expression varied
significantly across cancer types (Figure 1, TIMER,
p < 0.001). Specifically, TP53 was found to be up-
regulated in several cancer types, including Bladder
Urothelial Carcinoma, Cholangiocarcinoma, Colon
Adenocarcinoma, Esophageal Carcinoma, Head and
Neck Squamous Cell Carcinoma, HNSC-HPVpos,
HNSC-HPVneg, Kidney Renal Clear Cell Carcinoma,
LIHC, Lung Adenocarcinoma, Lung Squamous
Cell Carcinoma, Prostate Adenocarcinoma, Rectum
Adenocarcinoma, Skin Cutaneous Melanoma, Stomach

Adenocarcinoma, Thyroid Carcinoma, and Uterine
Corpus Endometrial Carcinoma. In contrast, 7P53
expression was significantly down-regulated in Kidney
Chromophobe.

p-value Significant Codes: 0 < *** < (0.001 < ** < 0.01
<*¥<0.05<.<0.1.

TP53 expression in liver hepatocellular
carcinoma (LIHC)

The expression of 7P53 in LIHC was further analyzed
using GEPIA and UALCAN. GEPIA analysis (Figure
2) revealed a significant increase in 7P53 expression
in tumor tissues (7 = 369) compared to normal tissues
(n = 160) (p < 0.05). This finding was corroborated
by UALCAN analysis (Figure 3), which also showed
significantly higher 7P53 expression in primary tumor
samples (n = 371) compared to normal samples (n = 50)
(p <0.05). These results strongly suggest that TP53 plays
arole in LIHC.

Tumor samples (T) are represented in red (n = 369), and
normal samples (N) are represented in gray (n = 160).

Statistical significance is denoted as follows: *p < 0.05,
**p <0.01, ***p < 0.001.

Correlation with clinical parameters

The relationship between TP53 expression and various
clinic-pathological parameters in LIHC was explored
using UALCAN. Analysis of patient age groups
(Figure 4) showed a significant up-regulation of 7P53
expression in the 41-60 years age group compared to
normal controls (p < 0.001). While 7P53 was also up-
regulated in other age groups, these differences were
not statistically significant (p > 0.001). TP53 expression
also increased progressively with cancer stage (Figure
5), suggesting its potential as a diagnostic biomarker
and its involvement in LIHC progression (p = 0.024).
There was a statistically significant difference in the
expression of TP53 across gender (Figure 6) (p =
0.0126,847).
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The general patterns of TP53 expression levels across various tissue and tumor types in tumors versus normal tissues.
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Fig. 2. Expression of TP53 in LIHC using GEPPIA database.
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Fig. 4. Distribution of TP53 expression across different patient
age groups. Statistical significance is indicated as follows: p <
0.05, p < 0.01, *p < 0.001.

The boxplot shows elevated TP53 expression in liver
hepatocellular carcinoma (LIHC) compared to normal
tissues, with levels increasing progressively across cancer
stages (Stages 1-4). This highlights TP53's potential as a
diagnostic biomarker and its utility in cancer staging and
prognosis.

TP53 promoter methylation

The promoter methylation levels of 7P53 in LIHC samples
were analyzed using TCGA data (Figure 7). Beta values,
representing the degree of DNA methylation, ranged
from 0.12 to 0.17. Normal samples (n = 50) exhibited
Beta values tightly clustered around ~0.15, whereas
primary tumor samples (n = 377) showed slightly lower
and more variable Beta values (p = 0.048), indicating a
trend towards TP53 promoter hypo-methylation in LIHC
tumors.
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Fig. 3. Boxplot depicts the expression levels of the TP53 gene
in liver hepatocellular carcinoma (LIHC): Normal (n = 50) and
Primary Tumor (n = 371) using the UALCAN database.
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Fig. 5. Distribution of TP53 expression across different patient
cancer stages. Statistical significance is indicated as follows: p
<0.05, p <0.01, *p < 0.001. (p = 0.024178).
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Fig. 6. Distribution of TP53 expression across the patient
gender. Statistical significance is indicated as follows: p < 0.05,
p<0.01, *p <0.001. (p = 0.0126847).

Validation of survival of TP53 in LIHC

The survival analysis results demonstrate that individuals

with high TP53 expression (represented by the red curve)
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generally have better survival outcomes compared to
those with low TP53 expression (blue curve). This
conclusion is supported by a HR of 0.65, indicating that
high TP53 expression is associated with a 35% reduction
in the risk of mortality. Furthermore, the statistically
significant p-value of 0.029 underscores the reliability
of this survival difference. The data suggest that TP53
expression levels are likely an important prognostic
factor in this cohort, with high TP53 expression linked to
improved patient survival (Figure 8).

TP53 correlation with immune cell abundance

The correlation between TP53 gene expression and
immune cell infiltration in LIHC was examined using
the TIMER database. The analysis included B cells,
CD8+ T cells, CD4+ T cells, macrophages, neutrophils,
dendritic cells, and tumor purity. The results showed
statistically significant positive correlations between
TP53 expression and infiltration of B cells (Cor. =
0.390, p = 0.0000000000000596), CD8+ T cells
(Cor. = 0.243, p = 0.00000508), CD4+ T cells (Cor. =
0.322280493, p = 0.000000000938), macrophages (Cor.
=0.293, p = 0.0000000335), neutrophils (Cor. = 0.210,
p = 0.0000786), and dendritic cells (Cor. = 0.290, p =
0.0000000507).  In contrast, tumor purity showed a
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statistically significant negative correlation with TP53
expression (Cor. = -0.147, p = 0.006) (Figure 9).

Overall survival based on TP53 Gene expression
levels

The association between TP53 expression and overall
survival in LIHC patients was assessed using GEPIA
and UALCAN databases. The analysis revealed that up-
regulation of TP53 expression was significantly correlated
with poorer prognosis in LIHC patients. GEPIA analysis
showed a hazard ratio (HR) of 1, with a p HR of 0.81
(Figure 10), including 182 patients with high TP53
expression and 182 with low expression. UALCAN
analysis supported this, with a significant p-value
of 0.019, indicating that 92 patients with high TP53
expression had worse survival outcomes compared to
273 patients with low/medium expression (Figure 11).

Genes positively correlated and interacting with
TP53 in LIHC

The heat map shows TP53 expression is relatively
consistent but slightly higher in tumor tissues compared
to normal tissues (Figure 12). TP53 is a known tumor
suppressor gene, and its expression levels may correlate
with tumor behavior or patient outcomes. The gene-
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gene interaction network focuses on TP53, showing its
interactions with other related genes (Figure 13). TP53
is a central regulator of many critical cellular processes,
especially in cancer, including apoptosis, DNA repair,
and cell cycle arrest. Disruption of this network can
promote cancer progression, making TP53 an essential
diagnostic and therapeutic target in liver cancer studies.

Blue (0-5): Indicates low gene expression.
Pink/Red (10-15+): Indicates high gene expression.

Protein—protein interaction (PPI): The PPI network
explores the functional relationships between proteins
and identifies key molecules involved in liver cancer
progression. The proteins have more interactions among
themselves than expected by chance, suggesting they are
biologically connected as a group. The PPI network was
derived from the STRING database. The network has 31
nodes and 33 edges, with an average node degree of 2.13,
an average local clustering coefficient of 0.388, and a PPI
enrichment p-value of 1.78¢-06.
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cBioPortal and cross-validation of TP53 using
ggplot

The cBioPortal analysis shows TP53 has both statistically
significant and large magnitude of change, indicating
its importance in LIHC. The volcano plot visualizes
differentially expressed genes based on fold change and
p-value. TP53 meets one or more significance thresholds
and is a well-known tumor suppressor gene. There were
13 up-regulated genes and 5 down-regulated genes, with
criteria of logfc > 1 and p-value < 0.05 (Figure 16).

Discussion

Our pan-cancer analysis reveals a striking overexpression
of TP53 mRNA in LIHC, validated by TCGA, GEPIA,
and UALCAN datasets. This raises an important question:
does TP53 act as a classical tumor suppressor in LIHC,
or might it adopt oncogenic roles, as reported in other
cancers? The dual role of TP53 as a tumor suppression
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Fig. 14. The protein—protein interaction (PPI) network, derived from analysis using the STRING database. Number of nodes:
31, number of edges: 33, average node degree: 2.13 avg. Local clustering coefficient: 0.388, expected number of edges: 13, PPI

enrichment p-value: 1.78e-06 Using STRING database.

In its wild-type form versus an oncogenic role when
mutated is well-established and may be influenced in
the liver by chronic inflammation, viral infections, and
metabolic stress.

Notably, TP53 expression increased with advancing
LIHC stage, indicating a role in disease progression and
potential utility as a biomarker. This may be partially
driven by promoter hypo-methylation observed in our
analysis, which typically correlates with transcriptional
up-regulation. However, the relationship between TP53
expression and methylation status warrants further
mechanistic investigation.

The prognostic implications of TP53 in LIHC appear
context-dependent and platform-specific. While Kaplan-
Meier Plotter linked high TP53 expression to improved
survival (HR = 0.65, p = 0.029), UALCAN and GEPIA
associated it with poorer outcomes. These discrepancies
likely arise from differing datasets, normalization
methods, and cutoff strategies. Additionally, clinical
heterogeneity and varying TP53 mutation statuses
complicate interpretation.

Collectively, our findings emphasize the need for
integrative multi-omic approaches that account for
mutation type, tumor microenvironment, and immune
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context to clarify TP53’s complex, stage-dependent
function in LIHC. Its association with immune infiltration
further underscores its relevance as both a prognostic
marker and potential therapeutic target.

Study Limitations

Acknowledging the inherent challenges of large-scale
bioinformatics investigations, this study primarily
relies on publicly available TCGA and GEO datasets.
While invaluable, these datasets may harbor inherent
biases related to their initial collection, processing, and
demographic representation, which could influence
generalizability. Furthermore, our analysis of protein—
protein interactions using STRING included parameters
with lower confidence scores, necessitating cautious
interpretation of these specific findings, as the underlying
interactions may lack robust experimental validation
(Figure 14).

A potential methodological limitation lies in the partial
overlap of samples across different analytical platforms
(e.g., TCGA-derived samples contributing to both
GEPIA and UALCAN). While efficient, this overlap
could inadvertently inflate perceived consistency or
introduce redundancy in certain analytical outputs. More
critically, patient cohort heterogeneity - encompassing
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Fig. 15. The frequency of various TP53 gene alterations across different cancer types.
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variations in ethnicity, prior treatment history, underlying
liver disease etiologies (e.g., HBV/HCYV status), and the
diverse sequencing platforms used - likely contributes
significantly to the observed wvariability in gene
expression and survival outcomes. These multifaceted
factors are plausible contributors to the discrepancies
identified between different analytical platforms and
underscore the imperative for rigorous control and
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careful consideration of these variables in future multi-
cohort validation studies (Figure 15).

Conclusion

In conclusion, this pan-cancer analysis highlights TP53
as a context-dependent player in LIHC, with elevated
expression linked to disease progression and potentially



modulated by promoter hypo-methylation. Conflicting
prognostic associations across platforms underscore the
complexity of TP53's role, shaped by mutation status and
tumor heterogeneity. These findings reinforce the need
for integrative, mutation-aware approaches to define
TP53’s function and exploit its potential as a biomarker

and therapeutic target in liver cancer.

List of Abbreviations

B cells B lymphocytes

BLCA Bladder Urothelial Carcinoma

CBioPortal Cancer Genomics Portal

CcDa* Cluster of Differentiation 4

CD8 Cluster of Differentiation 8

CHOL Cholangiocarcinoma

COAD Colon Adenocarcinoma

DEGs Differentially Expressed Genes

DNA Deoxyribonucleic Acid

ESCA Esophageal Carcinoma

FC Fold Change

GeneMANIA Gene Function Prediction Tool

GEO Gene Expression Omnibus

GEO2R GEO Online Analysis Tool for
Differential Expression

GEPIA Gene  Expression  Profiling
Interactive Analysis

ggplot Data Visualization Package in R

GSE101685/ GSE138178  GEO Dataset 101685/ GEO
Dataset 138178

GTEx Genotype-Tissue  Expression
Project

HNSC Head and Neck Squamous Cell
Carcinoma

HNSC-HPV HPV-negative Head and Neck
Squamous Cell Carcinoma

HR Hazard Ratio

KICH Kidney Chromophobe

KIRC Kidney Renal Clear Cell
Carcinoma

LIHC Liver Hepatocellular Carcinoma

LUAD Lung Adenocarcinoma

LUSC Lung Squamous Cell Carcinoma

mMRNA Messenger Ribonucleic Acid

N Normal Samples

oS Overall Survival

pG Cytosine-phosphate-Guanine
site

PPI Protein—Protein Interaction

PRAD Prostate Adenocarcinoma

READ Rectum Adenocarcinoma

RNA-seq RNA Sequencing

SKCM Skin Cutaneous Melanoma

STAD Stomach Adenocarcinoma

STRING Search Tool for the Retrieval of
Interacting Genes/Proteins

T Tumor Samples

TCGA The Cancer Genome Atlas

THCA Thyroid Carcinoma

TIMER Tumor Immune Estimation
Resource

TP53 Tumor Protein P53

UALCAN UALCAN Online Cancer Data

Analysis Tool
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UCEC Uterine Corpus Endometrial

Carcinoma.
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