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Introduction 

Polydactyly is a prevalent congenital disorder defined 
by having extra finger or toe. It is among the most 
common limb abnormalities, including both isolated 
and syndromic types. The expression of the disorder 
varies greatly, ranging from a little soft-tissue digit to 
a completely developed, functional finger and toe.  Its 
prevalence can be affected by family history, population 
type, as well as mode of inheritance. This makes it 
a subject of clinical and genetic interest (1). Recent 
research studies have discovered several genes related to 
polydactyly (2). 

GLI3, a gene related to glioma oncogenesis, which exists 
in two isoforms: active full-length GLI3 and repressor 
truncated GLI3 (GLI3R). SHH signaling promotes the 
GLI3R production (3). Functional investigations in 
mice have shown that SHH is important for proper limb 
development, as SHH null mutants show significant 
digit loss, whereas GLI3 mutant mice show polydactyly. 
SHH and GLI3 mutations in humans cause a variety 
of limb malformations, including preaxial or postaxial 
polydactyly, as well as more severe diseases such as 
Greig cephalopolysyndactyly syndrome (GCPS) and 
Pallister-Hall Syndrome (4).

Herein, we  report  a Pakistani family  with  isolated 
postaxial polydactyly  and identified a novel missense 

variant by whole-exome sequencing and Sanger 
sequencing  in the binding protein (CBP) domain of 
GLI3. To our knowledge, no prior reports have described 
variants in this domain causing isolated polydactyly, 
underscoring the novelty and significance of our findings. 

Materials and Methods

Ethical approvals and family recruitment

Ethical approvals were obtained from the Institutional 
Review Board of the University of Balochistan, Quetta 
and the National Institute of Health Sciences, Islamabad, 
Pakistan. A family from the region of Balochistan was 
recruited and each participant gave written informed 
consent. After being informed in their native language. 
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Consent granted authority to publish images and clinical 
data.

Genomic DNA extraction and blood collection

Genomic DNA was isolated through a commercially 
available kit, according to the manufacturer’s standard 
protocol. DNA concentration as well as purity were 
assessed using a spectrophotometer by measuring 
absorbance at 260 nm and 280 nm. The A260/A280 ratio 
was utilized as an indication of DNA purity with values 
of 1.8-2.0 indicator of DNA purity, with values between 
1.8 and 2.0 considered suitable for downstream genetic 
analysis. 

Whole exome sequencing

The whole exome sequencing (WES) of IV-1 in the family 
was done with an Illumina Hiseq-5200 following standard 
protocols. After the exome enrichment, the sequencing 
reads were collected and aligned to human genome 
assemblies hg19 (GRChg37; 5). Duplicate removal, 
quality recalibration, indel realignment, calling, and variant 
detection were performed using the Genome Analysis 
Toolkit and Picard tools (6). Variants were annotated 
with ANNOVAR (7). The average on-target sequencing 
depth was ~100×, with 98% of targeted bases at ≥20×. 
At the c.3199C>T site in GLI3 (CBP-binding domain), 
the alternate allele fraction at variant position was 82× 
raw read depth and 48%, as expected for a heterozygous 
alteration. The variant selection criteria included a minor 
allele frequency of >0.01 in gnomAD CADD-Phred scores 
>13, exonic variation, and splice sites (±12 bp) (8).

Sanger sequencing

The identified variant was validated using Sanger 
sequencing. PCR primers were designed using the GLI3 
reference sequence from the Esembl Genome Browser. 
Primer3 was used to generate variant-specific primers, 
which were then confirmed with Primer Stats. Sanger 
Sequencing was executed on DNA samples from two 
affected [III-2, IV-1] and one unaffected participant [IV-
2] using the BigDye Terminator V3.1 according to the 
manufacturer’s protocols (9).

Results

Clinical features

The pedigree of the family manifested autosomal 
dominant inheritance patterns (Figure 1A). In individual 

IV-1, bilateral postaxial polydactyly type B was observed, 
along with postaxial polydactyly type A in the right foot. 
Radial deviation of the distal phalanx of the fifth toe in 
the left foot was noted in IV-1 (Figure 1C). Individual 
III-1 exhibited bilateral postaxial polydactyly type A 
in the feet. No other anomalies were detected in any of 
the affected individuals, signifying an isolated disease 
pattern (Table 1). 

Genetic analysis

Whole-exome sequencing  revealed  a heterozygous 
missense variant in the GLI3 gene [NM_000168.6: 
c.3199C>T; p. (Pro1067Ser): Figure 1B]. This nucleotide 
change was not observed in normal human population 
databases, including gnomAD v2.1.1. In silico prediction 
programs SIFT, PolyPhen-2, and Mutation Taster all 
predict a potentially deleterious impact on GLI3 protein 
function. Segregation of the variant with phenotype was 
observed within the family. Based on current ACMG 
guidelines, it is classified as a likely pathogenic variant. 
The variant had a CADD score of 25.4, signifying 
deleteriousness, and a GERP++ score of 5.47, supporting 
strong evolutionary conservation. 

Discussion

GfLI3 is an essential regulator of tissue development and 
patterning. It is one of the three transcriptional factors 
in GLI (GLI1, GLI2, GLI3) that play a vital role in the 
canonical Hedgehog signaling pathway (10). The gene 
comprises 15 exons that encode a 1,580 amino acid 
protein distributed into multiple functional domains, such 
as N-terminus transcriptional repressor, a proteolytic 
cleavage site, zinc finger DNA binding motifs, CB-
binding regions (TA/CB), and two transcriptional 
activation domains at the C-terminal region. The 
missense variant identified in the present study is located 
within the conserved CREB-binding protein domain, 
which is essential for transcriptional activation capacity. 

This study identified a rare heterozygous missense 
variation in the GLI3 gene [NM\_000168.6: c.3199C>T; 
p. (Pro1067Ser)] through WES, underlying isolated 
polydactyly. The variant found in exon 15 affects a 
highly conserved amino acid residue in the C-terminal 
transcriptional activation domain, which plays 
an important role in the GLI3 gene function as a 
transcriptional activator. The CBP-binding domain of 
GLI3 is essential for its transcriptional regulation, since it 
facilitates interaction with CREB-binding protein (CBP), 
a chromatin remodeling- and gene expression-associated 

Table 1. Clinical features of affected individuals with isolated postaxial polydactyly.

Individuals Affected limbs Type of polydactyly Additional features
Upper limbs

IV-1 Both hands Postaxial, Type B None
Lower limbs

IV-1 Right foot Postaxial, Type A Radial deviation of distal 
phalanx of left fifth toe

III-1 Boot feet Postaxial, Type A None
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co-activator. GLI3-FL binds to CBP in phosphorylation-
independent fashion at residues 827 and 1132 in its 
C-terminal domain. This binding is required for GLI3-
FL–mediated activation of the GLI1 promoter and is 
seen only when SHH is present, implying that mutations 
within the CBP-binding domain would interfere with this 
binding and SHH-dependent transcriptional activity (11).

The importance of phenotype–genotype correlations 
in GLI3-associated disorders has been highlighted in a 
number of studies, with a focus on the domain-specific 
location of mutations (12). GCPS is more commonly 
linked to variants found in the N-terminal and C-terminal 
sections of the GLI3 protein, while Pallister-Hall 
syndrome (PHS) is more commonly associated with 
mutations found in the central region of the protein 
(13,14; Figure 1D). The phenotypic boundaries for 
isolated (non-syndromic) polydactyly are still unclear 
in spite of these well-established patterns. Interestingly, 
GLI3 mutations that cause non-syndromic polydactyly 
have been identified in several of the protein's functional 
domains, excluding the TA/CBP-binding domain (15). 
The current variant is the first report of polydactyly in 
the CBP binding domain.

In conclusion, this study reports a novel heterozygous 
missense variant in the GLI3 gene in a Pakistani family 
having isolated polydactyly. The variant is located within 
the CBP-binding domain. This is the first report of a GLI3 
missense variant in the CBP-binding domain causing 
isolated postaxial polydactyly. These findings expand the 
phenotypic spectrum and underscore the importance of 
domain-specific variant interpretation in GLI3.
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