

EDITORIAL

Genomic Beyond Rare Diseases

2 Ahmed Alfares, (MD, FRCPC, FCCMG, FACMGG)

3 Genomic Medicine Center of Excellence, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia

4 For decades, the field of genetics was viewed primarily
5 through the lens of rare, Mendelian disorders. The
6 diagnostic odyssey moved from basic metabolic workups
7 to single gene testing, and eventually to Whole Exome
8 and Genome Sequencing. However, as we stand on
9 the height of a new era in medicine, it is evident that
10 the utility of genomics has expanded far beyond these
11 traditional boundaries. We are witnessing a transition
12 where genomics is becoming a cornerstone of up-to-date
13 healthcare for the broader population.

14 The modern application of genomics is transforming
15 precision medicine across multiple disciplines. In
16 pharmacogenomics (PGx), for example, the impact is
17 immediate and tangible. In a pilot study of 512 patients
18 at a tertiary care center, >90% were found to carry an
19 actionable allele (1), highlighting the critical need for
20 genetic profiling to prevent adverse drug reactions and
21 ensure the “Right Drug Dose Now”. Beyond pharma-
22 cology, genomic profiling is revolutionizing oncology
23 through liquid biopsies and targeted immunotherapies,
24 and redefining microbiology by treating the microbi-
25 ome as a “new organ” via metagenomics.

26 Furthermore, the scope of genomics now encompasses
27 complex disease risks. Through Polygenic Risk Scores
28 (PRS), we can now stratify populations based on their
29 susceptibility to widespread conditions such as Type 2
30 Diabetes, inflammatory bowel disease, schizophrenia,
31 and cardiac disorders. This shifts the medical focus from
32 reactive treatment to proactive, personalized prevention,
33 balancing genetic risks with lifestyle interventions.

34 For Saudi Arabia, the implications of this shift are
35 profound. Our unique population structure, characterized

by specific incidence rates of common genetic disorders, 36
necessitates the creation of robust, local “Big Data” 37
genomic databases. Relying on international data is 38
insufficient, we must prioritize data sharing and basic 39
research within the Kingdom to capture population- 40
specific insights (2). 41

To realize this vision, we must leverage Artificial 42
Intelligence (AI) and deep learning to handle the scale 43
of data generation. However, technology alone is not 44
enough. We must address the “elephant in the room”: 45
infrastructure and cost. “Making Genomics Easy” 46
requires investment in manpower, training programs, 47
and accredited lab facilities capable of high-throughput 48
operations. 49

The ultimate goal is accessibility. By streamlining 50
operations and embracing local operational authority, 51
we aim to bring the cost of sequencing down. This 52
democratization of data will ensure that genomic 53
medicine is not a luxury for the few with rare diseases, 54
but a standard of care for the many. 55

References:

1. Bakheet D, Al Alshaykh H, Askar G, Maddirevula S, Hagos S, Alshahrani NH, Alhusseini M, et al. Pharmacogenomic testing implementation: Tertiary care center experience and results of a pilot of 512 patients. *Genet Med Open*. 2025 Mar 22;3:103426. <https://doi.org/10.1016/j.gimo.2025.103426>. PMID: 40519746; PMCID: PMC12166389.
2. Alfares, A. A. (2019). Genomics in Saudi Arabia call for data-sharing policy. *Journal of Biochemical and Clinical Genetics*. 1019;1(2):051-52. <https://doi.org/10.24911/JBCGenetics/183-1546945268>

