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Introduction

Glycosylphosphatidylinositol (GPI) is a glycolipid 
containing phosphatidylinositol that covalently attaches 
proteins to the plasma membrane (cell surface). In 
forming GPI-anchored proteins (GPI-APs), almost 
26-30 genes are involved (1,2). The GPI-APs group 
include different receptors, enzymes having hydrolytic 
nature, adhesion molecules, immune system-associated 
proteins, and complement regulatory proteins (1,2). 
Disease-causing variants have been identified in 
various components of the GPI-anchored-synthesis 
pathway, thus causing diverse phenotypes referred to 
as congenital disorders of glycosylation (1). Inherited 
GPI deficiencies include features such as epilepsy, 
ID, dysmorphic facial features, and multiple organ 
anomalies depending on the gene involved and the 
position of the identified variant. Pathogenic sequence 
variants in different genes have been reported in the 
GPI biosynthesis, such as the phosphatidylinositol 

glycan anchor biosynthesis class O (PIGO), PIGV, 
PIGW, PGAP2, PGAP3, and the PIGY reported to cause 
hyperphosphatasia with mental retardation syndrome 
(HPMRS; MIM # 614749; Table 1) also known as 

Uncovering the genetic basis of 
hyperphosphatasia with impaired 
intellectual development syndrome type 2: 
identification of a novel biallelic nonsense 
mutation in PIGO gene
Anam Nayab1, Shagufta Andleeb2, Shah Zeb3,4, Hafiza Yasmin Manzoor5, 
Zamrud Zehri6, Arif Mahmood7, Hammal Khan8, Muhammad Umair9*, 
Ahmed Waqas2*

ABSTRACT
Background: Glycosylphosphatidylinositol (GPI) is a glycolipid containing phosphatidylinositol related to the 
protein surfaces by covalent attachment. Inherited GPI deficiencies have various phenotypic chrematistics, 
which range from intellectual disability to dysmorphic features, epilepsy, and other severe anomalies. 

Methods: Molecular diagnosis was performed using whole exome sequencing (WES) followed by Sanger 
sequencing.

Results: WES revealed a novel homozygous nonsense variant (c.250C>T; p.Gln84Ter) in the exon 2 of the phos-
phatidylinositol glycan anchor biosynthesis class Ogene that might explain the disease phenotype in the patient.

Conclusion: This study will help in proper genetic counselling of the family and help in genotype-phenotype 
correlation in the future.

Keywords: GPI, WES, missense variant, PIGO, ID, novel variant.

Journal of Biochemical and Clinical Genetics

ORIGINAL ARTICLE

https://doi.org/10.24911/JBCGenetics/183-1673224261
mailto:m_umair@umt.edu.pk
mailto:ahmed.waqas@ue.edu.pk


23

Ta
bl

e 
1.

 G
en

es
 a

ss
oc

ia
te

d 
w

ith
 H

PM
RS

 a
nd

 th
ei

r c
lin

ic
al

 c
om

pa
ris

on
.

O
M

IM
 n

u
m

b
er

# 
23

93
00

# 
61

68
09

# 
61

47
49

# 
61

42
07

# 
61

60
25

# 
61

57
16

D
is

or
de

r n
am

e

H
yp

er
ph

os
ph

at
as

ia
 w

ith
 

im
pa

ire
d 

in
te

lle
ct

ua
l 

de
ve

lo
pm

en
t s

yn
dr

om
e 

1;
 H

P
M

R
S

1

H
yp

er
ph

os
ph

at
as

ia
 w

ith
 

im
pa

ire
d 

in
te

lle
ct

ua
l 

de
ve

lo
pm

en
t s

yn
dr

om
e 

6;
 H

P
M

R
S

6

H
yp

er
ph

os
ph

at
as

ia
 w

ith
 

im
pa

ire
d 

in
te

lle
ct

ua
l 

de
ve

lo
pm

en
t s

yn
dr

om
e 

2;
 H

P
M

R
S

2

H
yp

er
ph

os
ph

at
as

ia
 w

ith
 

im
pa

ire
d 

in
te

lle
ct

ua
l 

de
ve

lo
pm

en
t s

yn
dr

om
e 

3;
 H

P
M

R
S

3

G
P

I b
io

sy
nt

he
si

s 
de

fe
ct

 
11

; G
P

IB
D

11

H
yp

er
ph

os
ph

at
as

ia
 w

ith
 

im
pa

ire
d 

in
te

lle
ct

ua
l 

de
ve

lo
pm

en
t s

yn
dr

om
e 

4;
 H

P
M

R
S

4
G

en
e

P
IG

V
 - 

61
02

74
P

IG
Y

 - 
61

06
62

P
IG

O
 - 

61
47

30
P

G
A

P
2 

- 6
15

18
7

P
IG

W
 - 

61
02

75
P

G
A

P
3 

- 6
11

80
1

In
he

rit
an

ce
 (6

/6
)

-  A
R

-  A
R

-  A
R

-  A
R

-  A
R

-  A
R

G
ro

w
th

 (3
/6

)  
 N

.A
.

-  P
oo

r g
ro

w
th

 
-  P

oo
r g

ro
w

th
 N

.A
.

 N
.A

.
-  P

oo
r g

ro
w

th

H
ea

d 
&

 n
ec

k 
(6

/6
) 

 N
.A

.
-  M

ic
ro

ce
ph

al
y

-  M
ic

ro
ce

ph
al

y 
-  M

ic
ro

ce
ph

al
y 

 N
.A

.
-  M

ic
ro

ce
ph

al
y 

-  L
ar

ge
 a

nt
er

io
r f

on
ta

ne
l 

F
ac

e
-  M

id
fa

ce
 h

yp
op

la
si

a
-  P

ro
gn

at
hi

sm
 

F
ac

e
-  B

ite
m

po
ra

l n
ar

ro
w

in
g 

 N
.A

.
 N

.A
.

 N
.A

.
 N

.A
.

H
ea

rin
g 

im
pa

irm
en

t
Th

ic
ke

ne
d 

he
lic

es
H

ea
rin

g 
im

pa
irm

en
t

H
ea

rin
g 

im
pa

irm
en

t
 N

.A
.

-  H
ea

rin
g 

lo
ss

E
ye

s
-  H

yp
er

te
lo

ris
m

-  U
ps

la
nt

in
g 

pa
lp

eb
ra

l 
fis

su
re

s
-  L

on
g 

pa
lp

eb
ra

l fi
s-

su
re

s
-  A

rc
he

d 
ey

eb
ro

w
s

E
ye

s
-  C

on
ge

ni
ta

l c
at

ar
ac

ts
 

-  C
er

eb
ra

l v
is

ua
l i

m
pa

ir-
m

en
t 

-  D
ee

p-
se

t e
ye

s 
-  L

on
g 

pa
lp

eb
ra

l fi
s-

su
re

s 
-  S

tra
bi

sm
us

 

E
ye

s
-  H

yp
er

te
lo

ris
m

-  L
on

g 
pa

lp
eb

ra
l fi

s-
su

re
s

-  U
ps

la
nt

in
g 

pa
lp

eb
ra

l 
fis

su
re

s

 N
.A

 N
.A

E
ye

s
-  H

yp
er

te
lo

ris
m

-  U
ps

la
nt

in
g 

pa
lp

eb
ra

l 
fis

su
re

s
-  E

pi
ca

nt
ha

l f
ol

ds

N
os

e
-  B

ro
ad

 n
as

al
 b

rid
ge

-  B
ro

ad
 n

as
al

 ti
p

-  S
ho

rt 
no

se

N
os

e
-  D

ep
re

ss
ed

 n
as

al
 

br
id

ge
 

-  U
pt

ur
ne

d 
na

re
s

-  B
ul

bo
us

 n
as

al
 ti

p 

N
os

e
-  S

ho
rt 

no
se

-  B
ro

ad
 n

as
al

 b
rid

ge
-  B

ro
ad

 n
as

al
 ti

p

N
os

e
-  B

ro
ad

 n
as

al
 b

rid
ge

-  B
ro

ad
 n

as
al

 ti
p

-  S
ho

rt 
no

se

N
os

e
-  B

ro
ad

 n
as

al
 b

rid
ge

N
os

e
-  B

ro
ad

 n
as

al
 b

rid
ge

-  B
ro

ad
 n

as
al

 ti
p

M
ou

th
-  C

le
ft 

pa
la

te
 (r

ar
e)

-  S
ho

rt 
ph

ilt
ru

m
-  T

en
te

d 
m

ou
th

M
ou

th
-  H

ig
h-

ar
ch

ed
 p

al
at

e 
-  W

id
e 

m
ou

th

M
ou

th
-  T

en
te

d 
m

ou
th

-  C
le

ft 
pa

la
te

M
ou

th
-  C

le
ft 

pa
la

te
-  T

en
te

d 
up

pe
r l

ip

M
ou

th
-  T

en
te

d 
up

pe
r l

ip
-  L

ar
ge

 to
ng

ue

M
ou

th
-  C

le
ft 

pa
la

te
-  B

ru
xi

sm
-A

bn
or

m
al

 d
en

tit
io

n

C
ar

di
ov

as
cu

la
r (

3/
6)

  

H
ea

rt
-  C

ar
di

ac
 d

ef
ec

ts
-  V

en
tra

l s
ep

ta
l d

ef
ec

t 
(r

ar
e)

 N
.A

.

H
ea

rt
-  H

ea
rt 

de
fe

ct
s

-  A
tri

al
 s

ep
ta

l d
ef

ec
t

 N
.A

.
 N

.A
.

H
ea

rt
-  C

on
ge

ni
ta

l h
ea

rt 
de

-
fe

ct
s 

(in
 1

 fa
m

ily
)

C
on

tin
ue

d



24

O
M

IM
 n

u
m

b
er

# 
23

93
00

# 
61

68
09

# 
61

47
49

# 
61

42
07

# 
61

60
25

# 
61

57
16

S
ke

le
ta

l (
4/

6)
  

-  P
la

gi
oc

ep
ha

ly
 

-  J
oi

nt
 c

on
tra

ct
ur

es
 

-  O
st

eo
pe

ni
a

-  H
ip

 d
ys

pl
as

ia
-  P

ro
xi

m
al

 li
m

b 
sh

or
t-

en
in

g 

 -  P
la

gi
oc

ep
ha

ly
-  C

or
on

al
 s

yn
os

to
si

s 
 N

.A
.

 N
.A

.
 N

.A
.

-  H
yp

op
la

st
ic

 to
es

 
-  B

ila
te

ra
l a

dd
uc

te
d 

fo
re

fo
ot

 (r
ar

e)
 N

.A
B

ra
ch

yt
el

ep
ha

la
ng

y
-  B

ro
ad

 h
al

lu
ce

s
 N

.A
 N

.A
-  P

es
 e

qu
in

ov
ar

us
 

N
eu

ro
lo

gi
c 

(6
/6

)  

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  H

yp
ot

on
ia

-  S
ei

zu
re

s
-  M

en
ta

l r
et

ar
da

tio
n,

 
se

ve
re

-  A
th

et
oi

d 
an

d 
dy

st
on

ic
 

ha
nd

 m
ov

em
en

ts
 

-  M
od

er
at

e 
co

rti
ca

l 
at

ro
ph

y 
-  D

el
ay

ed
 m

ye
lin

iz
at

io
n 

-  S
pe

ec
h 

de
la

y
-  N

o 
sp

ee
ch

 d
ev

el
op

-
m

en
t 

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  D

el
ay

ed
 p

sy
ch

om
ot

or
 

de
ve

lo
pm

en
t 

-  D
el

ay
ed

 s
pe

ec
h 

-  D
ev

el
op

m
en

ta
l r

eg
re

s-
si

on
 

-  S
ei

zu
re

s,
 in

tra
ct

ab
le

 
-  T

ru
nc

al
 h

yp
ot

on
ia

 

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  D

el
ay

ed
 p

sy
ch

om
ot

or
 

de
ve

lo
pm

en
t, 

m
od

er
-

at
e 

to
 s

ev
er

e
-  D

el
ay

ed
 s

pe
ec

h 
an

d 
la

ng
ua

ge
 d

ev
el

op
m

en
t

-  H
yp

ot
on

ia
-  S

ei
zu

re
s

-  E
nl

ar
ge

d 
ve

nt
ric

le
s 

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  D

el
ay

ed
 p

sy
ch

om
ot

or
 

de
ve

lo
pm

en
t

-  M
en

ta
l r

et
ar

da
tio

n,
 

se
ve

re
-  I

nt
el

le
ct

ua
l d

is
ab

ili
ty

, 
m

ild
-  H

yp
ot

on
ia

-  P
oo

r o
r a

bs
en

t s
pe

ec
h

-  S
ei

zu
re

s 
-  D

is
or

de
re

d 
sl

ee
p 

pa
tte

rn
 

-  C
er

eb
ra

l a
tro

ph
y 

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  D

el
ay

ed
 p

sy
ch

om
ot

or
 

de
ve

lo
pm

en
t

-  I
nt

el
le

ct
ua

l d
is

ab
ili

ty
-  S

ei
zu

re
s,

 v
ar

ia
bl

e 
ty

pe
s

-  P
oo

r o
r a

bs
en

t s
pe

ec
h

-  A
bn

or
m

al
 E

E
G

C
en

tr
al

 N
er

vo
us

 S
ys

-
te

m
-  D

el
ay

ed
 p

sy
ch

om
ot

or
 

de
ve

lo
pm

en
t, 

se
ve

re
-  I

na
bi

lit
y 

to
 w

al
k

-  L
ac

k 
of

 s
pe

ec
h 

de
ve

l-
op

m
en

t
-  S

ei
zu

re
s,

 g
en

er
al

iz
ed

-  S
ei

zu
re

s,
 m

yo
cl

on
ic

-  I
nv

ol
un

ta
ry

 m
ov

e-
m

en
ts

-  H
yp

op
la

st
ic

 c
or

pu
s 

ca
llo

su
m

 
-  H

yp
op

la
st

ic
 c

er
e-

be
llu

m
 w

ith
 a

bs
en

t 
ve

rm
is

-  C
er

eb
el

la
r v

er
m

is
 

hy
po

pl
as

ia
 

La
bo

ra
to

ry
 a

bn
or

m
al

-
iti

es
 (6

/6
)  

-  E
le

va
te

d 
al

ka
lin

e 
ph

os
ph

at
as

e 
(v

ar
ie

s 
fro

m
 1

.3
-2

0 
tim

es
 th

e 
ag

e-
ad

ju
st

ed
 u

pp
er

 
lim

it 
of

 n
or

m
al

)
-  H

yp
er

ph
os

ph
at

as
ia

-  I
nc

re
as

ed
 s

er
um

 c
re

-
at

in
e 

ki
na

se
 

-  I
nc

re
as

ed
 a

lk
al

in
e 

ph
os

ph
at

as
e 

-  D
ec

re
as

ed
 e

xp
re

s-
si

on
 o

f G
P

I-A
P

s 
on

 
fib

ro
bl

as
ts

 

-  I
nc

re
as

ed
 s

er
um

 a
lk

a-
lin

e 
ph

os
ph

at
as

e
-  H

yp
er

ph
os

ph
at

as
ia

-  I
nc

re
as

ed
 s

er
um

 a
lk

a-
lin

e 
ph

os
ph

at
as

e
-  H

yp
er

ph
os

ph
at

em
ia

-  I
nc

re
as

ed
 s

er
um

 a
lk

a-
lin

e 
ph

os
ph

at
as

e 
-  D

ec
re

as
ed

 e
xp

re
s-

si
on

 o
f G

P
I -

an
ch

or
ed

 
m

em
br

an
e 

pr
ot

ei
ns

-  I
nc

re
as

ed
 s

er
um

 a
lk

a-
lin

e 
ph

os
ph

at
as

e



25

Mabry syndrome (2-5). Herein, we report a proband 
(the first case from the Pakistani population) with 
epileptic encephalopathy caused by a novel disease-
causing variant in the PIGO gene.

Subjects and Methods

For the present study, a family with an autosomal 
recessive (AR) inheritance pattern was recruited 
from the Khyber Pakhtunkhwa province of Pakistan 
(Figure 1A). The patient was evaluated by taking a 
medical history and performing biochemical tests at 
a local government hospital. Consent in written form 
was obtained from the participants for the genetic 
analysis in compliance with the Helsinki Declaration. 
The University of Education, Lahore, Pakistan’s 
Institutional Review Board approved the current study. 
Blood samples were collected and processed further 
for DNA extraction and quantification using standard 
methods (6). WES was performed using DNA from the 
proband (IV-1). WES and variants filtering steps were 
performed as described earlier (7). Standard-screening 
principles were used to search for different functional 
variants associated with the patient phenotype (8). 
The genes already reported in the Online Mendelian 
Inheritance in Man and literature (PUBMED) were 
given priority. Prioritized disease-causing variants 
were Sanger sequenced for segregation analysis 
(9,10). The pathogenic nature of the identified variant 
was calculated using different tools. The Exome 
Aggregation Consortium (ExAC) and genomAD 
were searched to see if the variant was reported in 
the general population. Amino acid conservation was 
determined using NCBI-HomoloGene.

Protein modelling

The structure sequence of PIGO full length was retrieved 
from the Protein Data Bank. The protein modelling 
was executed according to the previously outlined 
methodology (11,12). Figures were made using the 
Py-Molecule molecular viewer (https://pymol.org/) 
(Figure 2A and B) (13).

Results

Clinical description

The proband (boy: IV-1) was the first child of a healthy 
Pakistani Pashto-speaking family. Pregnancy was 
unremarkable, and he was born with vaginal delivery 
having an average birth weight. Shortly after birth, 
features such as feeding difficulties, severe axial 
hypotonia, and muscular dystrophy were observed. He 
could not recognize his parents and did not establish eye 
contact presenting the features of global developmental 
delay (GDD). The proband also showed frequent 
seizures and drooling. He is on several antiepileptic 
drugs like phenobarbitone and topiramate. Recurrent 
episodes with pneumonia were observed in the second 
year of life, which led to respiratory insufficiency, 
and a gastrostomy tube was used to fulfil the 
feeding difficulties. Serum alkaline phosphatase was 
unremarkable; however, slightly in the upper ranges, 

i.e., 235, 247, 263, and 257 U/l (Normal range: 96-297 
U/l). His younger brother is healthy with no epileptic or 
any other complications.

Molecular investigation

WES was performed as described earlier (14). Screening 
and filtering different homozygous and compound 
heterozygous variants manifested a novel homozygous 
stop gain variant (c.250C>T; p.Gln84Ter) in the exon 
2 of PIGO (NM_032634.4) located on chromosome 
9p13.3-9p13.3. The variant was also screened in ExAC, 
genomAD, and 145 control exomes (Figure 1B), and 
the variant was not observed in the homozygous state 
using both databases. The Gln84 amino acid was also 
conserved across different species (Figure 1C).

Protein modelling

3D modelling of the mutated PIGO and wild-type 
PIGO was performed (15). Their structural comparison 
showed that the mutated PIGO protein would result in 
a more minor, non-functional protein that loses its main 
domains. Thus, the mutated PIGO will not perform a 
proper function.

Discussion

In this study, we report an affected child having GDD, 
severe epileptic seizures, ID, and little elevation of 
ALP. We performed WES and identified a biallelic stop 
gain variant (c.250C>T; p.Gln84Ter) residing in the 
transmembrane domain of the protein (Figure 1B) of the 
PIGO, thus expanding the clinical and variant spectrum 
of PIGO-related pathogenesis. To date, disease-causing 
variants in the PIGO gene have only been reported in 
a few studies, including seven females and two males 
from six families (1-5,16). If the mRNA molecule coding 
for a protein avoids degradation through the nonsense-
mediated decay pathway, the resulting truncated protein 
may exhibit a distinct structural formation that deviates 
from the full-length version of the protein, which can 
lead to improper functioning and potential cellular 
dysfunction.

Kuki et al. (17) and Nakamura et al. (3) reported 
patients that possessed missense variants in the alkaline 
phosphatase domain (core domain). They showed more 
progressive and severe phenotypes than the affected 
individuals reported by Krawitz et al. (2) and in the 
present study. The mild neurodevelopmental feature in 
our patient can be associated with the location of the 
variant identified in the transmembrane domain. Thus, 
the position of a variant in the protein might play a 
role in the diverse phenotypic presentation. Similarly, 
Nakamura et al. (3) reported that severe phenotypes 
might be associated with the location of variants 
identified in the specific PIGO domain, such as the 
core domain. These observations might lead toward 
genotype-phenotype correlation associated with PIGO-
pathogenesis. However, more substantial evidence and 
functional analysis are required to elucidate phenotype–
genotype correlations and to prove such a hypothesis. 
Neurological dysfunction in the affected individual 

https://pymol.org/
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reported here and in the patients said previously (4,17) 
is complex and thus cannot be related to alkaline 
phosphatase impairment.

Recent research and technological advancement have 
compelled scientists to think outside the box and develop 
a better understanding of neurodevelopmental disorders 
and their etiological bases (18-20) Given the complex 
nature of such disorders, any theoretical model designed 
to explain the disease pathogenesis will depend on 
advanced functional studies involving novel disease-gene 
identification, cohort studies, and available studies using 

animal models (21-24). Identification of such variants 
will help build a database that might lead to future 
therapeutic interventions and help conduct clinical trials 
(25,26). We revealed that homozygous loss-of-function 
variants in PIGO cause hyperphosphatemia with impaired 
intellectual development syndrome-2. Furthermore, 
novel variant identification for rare genetic disorders 
and making a database will help add such variants to the 
newborn screening program. In addition, preimplantation 
genetic testing for aneuploidies, noninvasive prenatal 
testing, and PGT-M can be employed for parents wishing 
to have future pregnancies (27-30). Identification of 

Figure 1. (A) Pedigree of the present family along with genotype. (B) Surface expression of CD16 antigen. (C) Exons and domains of 
the PIGO and location of the identified variant. (D) Conservation of Gln84 across different species.

Figure 2. Comparison of Wild Type and Mutant Protein Structures. (A) Representation of the 
wild-type protein structure. (B) Representation of the mutant protein structure. The structural 
differences between the wild type and mutant proteins include loss of 3/4th amino acid residues.
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additional families and functional studies are required 
to understand the cellular role of PIGO associated with 
neurodegeneration.

Conclusion

In conclusion, we have detected a novel homozygous 
variant in the PIGO gene in an affected individual 
having mild epileptic encephalopathy, along with 
slightly increased serum alkaline phosphatase levels 
and decreased CD16 expression but normal CD59 and 
CD24 expression. Furthermore, we suggest a genotype-
phenotype correlation concerning the association 
between the location of the identified variant in the 
transmembrane domain and milder clinical phenotypes. 
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