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CASE REPORT

Novel mutation of the FHL1 gene associated
with congenital myopathy and early
respiratory muscles involvement: a case report

Rana Almutairi?, Sara Alrashidi!, Muhammed Umair?, Maha Alshalan3,
Lamia Alsubaie®?, Taghrid Aloraini*, Ahmed Al Ahmad*, Ahmed Alfares*>,
Fuad Al Mutairi**3*

ABSTRACT

Background: Congenital myopathies are a diverse group of diseases that share features from the early onset
of symptoms in the first year of life, such as hypotonia, muscle weakness, and developmental delays, and are
often associated with respiratory insufficiency and feeding difficulties.

Case presentation: Here, we report an 8-year-old boy having hypotonia and signs of respiratory insufficiency
that ended with tracheostomy and ventilator-dependent status. Muscle biopsy showed histological findings of
congenital fiber-type disproportion myopathy. The whole exome sequencing revealed a novel hemizygous mis-
sense variant (c.530A > C p.GIn177Pro) that confirms the diagnosis of FHL1-associated congenital myopathy.

Conclusion: The findings in this study help to expand the genetic and mutational spectrum of the FHL1 gene
associated with respiratory insufficiency and help in formulating a precise strategy for prognosis and future
management of patients.

Keywords: Congenital myopathy, FHL1, hypotonia, congenital fiber-type disproportion myopathy, and X-linked
myopathy.

Introduction

Congenital myopathy (CM) refers to a heterogeneous
group of inherited neuromuscular disorders that are
exhibited at birth or within the first few months of life
(1). CMs are characterized by a delay in gross motor
milestones, nonprogressive muscular hypotonia, and
immunohistochemical findings, which ranges from
myopathic to overtly dystrophic changes on muscle
biopsy. These features impair the ability of muscles to
contract, ultimately resulting in the loss of muscle fibers
(2). CMs are associated with structural changes in some
rare disorders with variable degrees of severity, including
central core disease, nemaline myopathy, and congenital
fiber-type disproportion myopathy (2).

FHLI is a member of four-and-a-half LIM domains
protein 1 located on the Xq26.3 chromosome. The LIM
domain proteins play an important role in sarcomeres
synthesis and muscle mass regulation, and act as docking
sites in a protein complex assembly based on a highly
conserved cysteine-rich zinc-binding motif having a
double zinc finger domain (3). Furthermore, FHLI has
three isoforms that are highly expressed in skeletal and
cardiac muscles known as FHL1A, FHLIB, and
FHL1C

E‘I’

(4). Recently, FHLI was identified as a causative gene in
several muscle myopathies, including X-linked myopathy
with postural muscle atrophy [Online Mendelian
Inheritance in Man (OMIM) 300696], X-linked dominant
scapuloperoneal myopathy (OMIM 300695), reducing
body myopathy (OMIM 300717), rigid spine syndrome,
and Emery—Dreifuss muscular dystrophy (OMIM
300696) (5). Up until now, the exact pathomechanism
associated with FHLI mutations is unknown; however,
proper genotype—phenotype correlations help in
understanding the underlying F'HLI gene pathogenesis.
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CMs are not regarded as progressive disorders; however,
additional factors such as respiratory muscle weakness,
scoliosis, and kyphoscoliosis may coexist, which are
associated with extrapulmonary restriction of the lungs,
resulting in the impairment of the pulmonary function.
Additionally, they compromise the ability of the airways
to clear the secretion and to predispose pneumonia
and aspiration. As CMs usually involve the muscles of
respiration, many patients require ventilatory assistance
for a few months or years after the onset of the symptoms.

Herein, using whole exome sequencing, we report a
novel hemizygous missense mutation in the FHLI gene
in a patient with congenital fiber-type disproportion
myopathy with recurrent aspiration. We reviewed all the
previously reported cases to identify the different FHLI
gene mutations that may lead to respiratory impairment
in patients with CM and carried out genotype—phenotype
correlation for FHL I-associated CM.

Case Presentation

The patient is an 8-year-old boy, who is the first and only
child of healthy, non-consanguineous parents (Figure 1A).
After an uneventful full-term pregnancy, the baby was born
by an uncomplicated cesarean section due to prolonged
rupture of the membrane; subsequently, he was discharged
with his mother in a good condition. At the age of 5 months,
the proband had hypotonia with failure to thrive and a
relatively weak cry. The proband had developmental delays
in the form of gross motor, speech, and language delays.
In the following months, he required frequent admissions
to the hospital and Pediatrics Intensive Care Unit (PICU)
due to respiratory failure, recurrent chocking attacks, and
aspiration pneumonia. His medical history included chronic
lung disease and bronchial asthma. The family history
was unremarkable, except for recurrent miscarriages for
the mother where routine investigations were conducted,
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Figure 1. (A) Pedigree of the index family. (B) Thoracic-spine radiograph showing moderate thoracolumbar dextroscoliosis estimated
by Cobb’s angle measuring 37° taken from the upper end plate of T12-2 lower end plate of the vertebral bodies, and there is a
significant downward right-sided pelvic tilt. (C) DNA chromatogram, the index, and two healthy family members.
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and all were normal including chromosomal analysis and
placental histological findings.

On physical examination, the boy weighted 17.8 kg (< 3rd
percentile), was 108 cm long (< 3rd percentile), and his
head circumference was 50.5 cm (10th—25th percentile).
He had dysmorphic features, including the myopathic
face, low hairline, bilateral epicanthal folds, and gingival
hyperplasia.

Neurological examinationrevealed a generalized weakness
that mainly involved both upper and lower limbs with
poor head control and hyporeflexia. Joint hyperlaxity was
observed through musculoskeletal examination without
any signs of contracture. On auscultation, the air entry was
reduced and crackles were heard over all the lung fields. A
thoracic spine X-ray revealed bilateral perihilar air space
opacity and dextroscoliosis with a Cobb angle of 37°
taken from the upper end plate of T12-2 lower end plate
of the vertebral bodies (Figure 1B). His electromyogram
(EMG), nerve conduction study, and brain Magnetic
resonance imaging (MRI) were all normal. During his
disease course, his condition did not improve and he was
frequently admitted and also needed to be intubated and
ventilated; he was admitted to the PICU several times
due to hypercarbia. By the age of 18 months, the patient
was tracheotomized and became ventilator-dependent.
Now, at the age of 8, the patient is stable and saturating
well on a home ventilator. The proband is having a global
developmental delay, wherein he is unable to sit or stand
independently; however, according to his mother, he can
write alphabets, numbers, and talk fluently for his age.

Muscle biopsy, from an unspecified site, was carried
out at the age of 9 months. Histological analyses of the
muscle showed a marked variation in muscle fibers size,
due to the presence of evenly distributed fibers around
the atrophic fibers, alternating with the normal-sized
fibers. Additionally, ATPase reactions revealed type 1
fiber atrophy, up to 50% smaller in size than type 2 fibers,
with a tendency of type 1 fibers clustering. The presence
of atrophic fibers with sarcolemmal folds was confirmed
using ultrastructural examination. The fiber illustrated
disorganization of myofibrils; however, no ring fibers
were observed. There were occasional collections of
enlarged mitochondria with cristae. Therefore, congenital
fiber-type disproportion myopathy was compatible with
the histomorphology of the biopsied muscle.

Chromosomal analysis, array Array based comparative
genomic hybridization (CGH), and Sanger sequencing of
RYRI and TMP3 genes were unremarkable. Additionally,
molecular testing for SMN gene and SNRPN gene was
carried out using standard methods and the result
were unremarkable. Subsequently, trio-Whole Exome
Sequencing (WES) was carried out for the proband and
parents using standard methods. The WES revealed a novel
hemizygous missense variant (c.530A>C; p.GIn177Pro)
in exon 6 of the FHLI gene (NM_001159702.3)
located on chromosome Xq26.3 (Figure 1). Using
Sanger sequencing, the identified variant segregated
perfectly from the disease phenotype and was found in
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the mother in a heterozygous status, while the father
and two maternal uncles’ results revealed normal wild
type. This variant classified as likely pathogenic based
on the American College of Medical Genetics (ACMG)
guidelines and has not been previously observed in large-
scale sequencing databases, such as Exome Aggregation
Consortium, dbSNP/1,000 genome, Exome Sequencing
Projects or Genome Aggregation Database, and local
database. This substitution (¢.530A>C; p.GIn177Pro) was
predicted to be deleterious by several online computational
prediction tools [PolyPhen2, MutationTaster, and Sorting
Intolerant From Tolerant (SIFT)]. Complete attention
to the TPM3, ACTAI, and RYRI genes did not reveal
any possible diseases-causing variants in any of them.
Furthermore, manual analysis of the raw data generated
from WES, including Binary Alignment Map (BAM) file,
failed to identify deletion or duplication in the above-
mentioned gene.

Discussion

CMs are diagnosed based on clinical features associated
with respiratory insufficiency, feeding difficulties, and
histological changes that are seen in the patients’ biopsied
muscles. However, of late, genetic testing is considered
as one of the preferred methods since it can detect a
breadth of phenotypic variability associated with each
gene (2). Recently, most of the studies have identified
the mutations in the FHLI (which plays a critical role
in the development and function of the skeletal muscles)
as a causative gene in different human myopathies,
considering its high level of expression in the skeletal as
well as cardiac muscles (6).

In the previous studies, FHLI mutation has been
identified in various phenotypes of X-linked myopathy,
such as X-linked dominant scapuloperoneal myopathy,
distal myopathy with hypertrophic cardiomyopathy,
Emery—Dreifuss muscular dystrophy with rigid spine,
and many other phenotypes (7). However, the association
between FFHLI mutation and respiratory insufficiency is
discussed without clear phenotype delineation. Only a
few studies have identified the coexistence of respiratory
impairment in association with FHL/ mutation in their
patients (Table 1).

In this study, we report a patient with a novel hemizygous
missense mutation (¢.530A>C; p.Glnl177Pro) in exon 6
of the FHLI gene associated with congenital myopathy
and early respiratory muscle involvement. The identified
mutation changes a highly conserved Gln amino acid at
position 177 into a Pro amino acid. Glutamine is a polar
amino acid, while proline is a hydrophobic aliphatic
amino acid. This mutation (p.GInl177Pro) results in
secondary structure disability and improper FHLI
function. There are around 12 different isoforms in the
RefSeq and Ensemble database for the FHL/ gene, and
9 out of 12 results in the same protein changes from Gln
to Pro at different amino acid positions (177 or 206), and
in the three remaining isoforms the variant is considered
as a non-coding exon. The FHLI protein consists of four
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Figure 2. (A-B) Schematic representation of FHL1 exons and protein domain
representation. FHL1 consists of four LIM domains (LIM1-4), an N-terminal, and a half-
LIM domain [Z]. (C) The mutation identified in the present study is located in the highly

conserved LIM 3 domain.

LIM domains (LIM1-4), a half-LIM domain (Z), and an
N-terminal and C-terminal (Figure 2B). The mutation
(p-GIn177Pro) identified in our patient is located in the
highly conserved LIM3 domain (Figure 2B,C).

Some of the previously reported patients who had FHL!
mutations were severely affected, as they required
ventilatory support either permanently or while sleeping,
and had various symptoms from childhood to late
adulthood (4,8). About five patients died from respiratory
failure and the age of the deceased individuals ranged
widely from the age of 6 to 50 (4,8-10). Until now,
few pathogenic mutations in the FHLI gene have been
reported and mostly they appear in the second and
fourth LIM domains. The mutations in the FHLI gene
were identified at positions ¢.367C>T, ¢.369C>G,
¢.395G>T, and ¢.672C>G, where ¢.367C>T, ¢.369C>G,
and ¢.395G>T were reported mostly in early childhood,
while the ¢.672C>G variant has been associated with the
later onset of the symptoms (4,8—10). Other mutations,
such as ¢.381_382insATC, ¢.827G>A, c¢457T>C,
¢.377G>A, and ¢.451-459del, have been associated with
various phenotypes. However, most of them present at
a later stage with respiratory insufficiency (8,9,11-14).
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Because of the small number of available patients with an
unclear description of respiratory status, there is no clear
phenotype—genotype correlation neither with the onset
nor with severity of the respiratory complications.

Conclusion

The findings in this study increase the mutational spectrum
ofthe FHL I gene associated with respiratory insufficiency
and also ensure that clinicians and respiratory therapists
are aware of the respiratory involvement in the patients
with FHLI gene mutations. Further studies are required
to dissect the pathophysiology of the FHLI mutations
in terms of respiratory muscle involvement to obtain a
precise future management strategy.
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