

4 CASE REPORT

5 **Noonan syndrome caused by a pathogenic
6 SOS1 variant: expanding the phenotypic
7 spectrum and molecular correlations**

8 Laura María Zabala Sepúlveda^{1,2,3*} , Lina Johanna Moreno Giraldo^{2,3,4}

9 **ABSTRACT**

10 **Background:** Noonan syndrome (NS) is an autosomal dominant condition characterized by facial dysmorphism, congenital heart disease, growth impairment, and ectodermal findings. Variants in SOS1 account for a
11 large proportion of cases.

12 **Case presentation:** We report a male infant with nasal bone hypoplasia and shortening of long bones identified
13 during the prenatal period. After birth, he presented with facial dysmorphism, pulmonary valve stenosis,
14 axial hypotonia, and renal anomalies. The karyotype was normal. Whole-exome sequencing with CNV analysis
15 focused on NS-related genes identified a heterozygous SOS1 variant, c.1656G>T (p.Arg552Ser), classified
16 as pathogenic according to ACMG criteria and curated databases, supporting the diagnosis of SOS1-related
17 Noonan syndrome type 4. The SOS1 p.Arg552Ser variant has been reported in individuals with typical NS fea-
18 tures, supporting the genotype–phenotype correlation. In this patient, the combination of prenatal skeletal
19 markers and postnatal renal involvement illustrates the wide phenotypic variability. Early molecular confi-
20 rmation allowed multidisciplinary care and targeted surveillance (cardiac, endocrine, and oncologic), as well
21 as genetic counseling.

22 **Conclusion:** This case highlights the diagnostic utility of early exome sequencing when NS is suspected, but
23 the phenotype is incomplete, and emphasizes the value of integrating prenatal markers with postnatal find-
24 ings to enable timely management guided by precision medicine.

25 **Keywords:** Noonan syndrome, SOS1 gene, RAS/MAPK, RASopathies, phenotypic variability, precision diagno-
26 sis, personalized treatment.

28 **Introduction**

29 Noonan syndrome (NS) is a relatively common autosomal
30 dominant disorder characterized by distinctive facial
31 features, congenital heart disease, short stature, and
32 ectodermal findings (1). Prevalence estimates range from
33 1:1000 to 1:2500 live births, and clinical expressivity
34 is variable. Approximately 50% of cases are attributed
35 to missense variants in the *PTPN11* gene, located on
36 chromosome 12; however, multiple genes in the RAS/
37 MAPK signaling cascade are also implicated, including
38 *SOS1*, *RAF1*, *RTI1*, *KRAS*, *BRAF*, *NRAS*, and *LZTR1*. In
39 nearly 10% of cases, no genetic alteration is identified,
40 suggesting the existence of other yet-undiscovered genes.
41 This genetic heterogeneity underlies a broad phenotypic
42 spectrum and frequent overlap with related conditions
43 historically grouped as RASopathies (2,3).

44 The syndrome was first described in 1968 by Jacqueline
45 Noonan (4). The most frequent clinical manifestations

46 include craniofacial dysmorphisms such as a triangular 46
47 face, broad forehead, hypertelorism, ptosis, and low-set, 47
48 posteriorly rotated ears—findings commonly associated 48
49 with *PTPN11* variants. Growth delay, usually evident 49
50 after the first year of life, is also characteristic in patients 50
51 with variants in this gene (3,5).

Correspondence to: Laura María Zabala Sepúlveda

*Resident of Specialization in Pediatrics, Universidad Libre Seccional Cali. Cali, Colombia

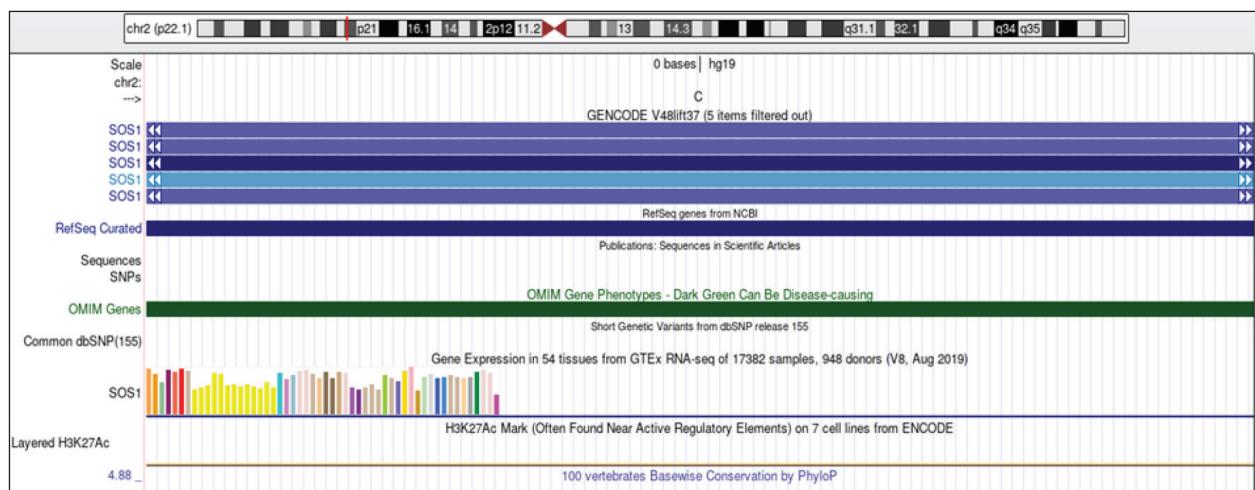
Email: laurama.zabala@gmail.com

*Full list of author information is available at the end of
the article.*

Received: 26 July 2025 | **Revised:** 23 October 2025 |

Accepted: 11 December 2025

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: <https://creativecommons.org/licenses/by/4.0/> which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s).


52 NS displays multisystem involvement. Cardiac
 53 disease occurs in approximately 80% of patients, with
 54 pulmonary valve stenosis being the most frequent
 55 (60%-70%), followed by hypertrophic cardiomyopathy
 56 (20%-30%) and atrial septal defect (10%-30%) (5,6).
 57 Neurologically, about 80% of patients have a normal
 58 intelligence quotient, although various neuropsychiatric
 59 manifestations are common, including alexithymia,
 60 mood disorders, social and communication difficulties,
 61 ADHD, language disorders, and autistic traits
 62 (1,7). Genitourinary anomalies (renal pyelectasis,
 63 ectopia, duplication of the collecting system,
 64 cryptorchidism) and lymphatic involvement—ranging
 65 from lymphedema to chylothorax and ascites—are
 66 frequent (3,8). Hematologic abnormalities include
 67 bleeding tendencies, often with prolonged aPTT and
 68 coagulation factor deficiencies, as well as an increased
 69 susceptibility to neoplasms such as JMML, MDS, ALL,
 70 and neuroblastoma (9). Ocular and auditory defects
 71 have also been described. Cutaneous manifestations
 72 include follicular keratosis on extensor and facial
 73 surfaces, multiple lentigines, and other pigmentary
 74 changes; these are particularly notable in *SOS1*-related
 75 cases (3,10).

76 Variants in the *SOS1* gene are among the main
 77 molecular causes of NS, accounting for approximately
 78 20% of cases. *SOS1* encodes a multidomain guanine
 79 nucleotide exchange factor (GEF) for RAS that
 80 promotes RAS activation through GDP–GTP exchange
 81 (Figure 1). The resulting persistent activation of the
 82 RAS–MAPK pathway contributes to the developmental
 83 abnormalities characteristic of NS. Clinically, *SOS1*-
 84 related NS presents a distinctive phenotype that often
 85 includes pulmonary valve stenosis and prominent
 86 ectodermal abnormalities (e.g., keratosis pilaris,
 87 follicular hyperkeratosis, and curly hair), while
 88 cognitive development tends to be preserved compared
 89 with other molecular subtypes. Recognizing this pattern
 90 has practical implications for anticipatory guidance and
 91 targeted surveillance (11).

The diagnosis of NS has traditionally been based on
 92 clinical criteria; however, given its wide phenotypic
 93 heterogeneity (Figure 2), this approach may be
 94 insufficient. Prenatal markers such as nasal bone
 95 hypoplasia and long bone shortening can raise early
 96 suspicion but are not specific. Postnatally, multisystem
 97 involvement—such as cardiac, neuromuscular, renal,
 98 lymphatic, or dermatologic manifestations—may appear
 99 in variable combinations, complicating a purely clinical
 100 diagnosis. In this context, next-generation sequencing
 101 (NGS) technologies such as targeted gene panels,
 102 whole-exome sequencing (WES), and whole-genome
 103 sequencing (WGS) have become key tools in clinical
 104 practice. These methods enable diagnostic confirmation
 105 and more precise classification; they inform genetic
 106 counseling, prognostic estimation, and personalized
 107 therapeutic decisions; and they facilitate the identification
 108 of new genes and variants, expanding the understanding
 109 of the genetic basis of NS and opening future research
 110 and therapeutic avenues. Early identification is essential
 111 to guide appropriate clinical follow-up and prevent
 112 complications (12,13).

113 Management of NS is multidisciplinary and requires
 114 lifelong follow-up to detect complications early and
 115 optimize quality of life. In the absence of a curative
 116 therapy, care is individualized according to clinical
 117 manifestations and depends on early diagnosis, which
 118 supports continuous cardiovascular surveillance given
 119 the risk of hypertrophic cardiomyopathy, arrhythmias,
 120 and sudden death, even in the absence of structural
 121 disease. Specific genetic variants inform oncologic
 122 risk and justify targeted monitoring strategies; early
 123 recognition also facilitates the detection of endocrine
 124 disorders such as growth hormone deficiency and helps
 125 avoid unnecessary investigations by distinguishing NS
 126 from other RASopathies (14,15) (Figure 2).

127 Cardiovascular abnormalities determine morbidity
 128 and mortality (50%-80% of cases). Hypertrophic
 129 cardiomyopathy is a major complication associated with
 130 a high risk of sudden death, and mortality correlates
 131

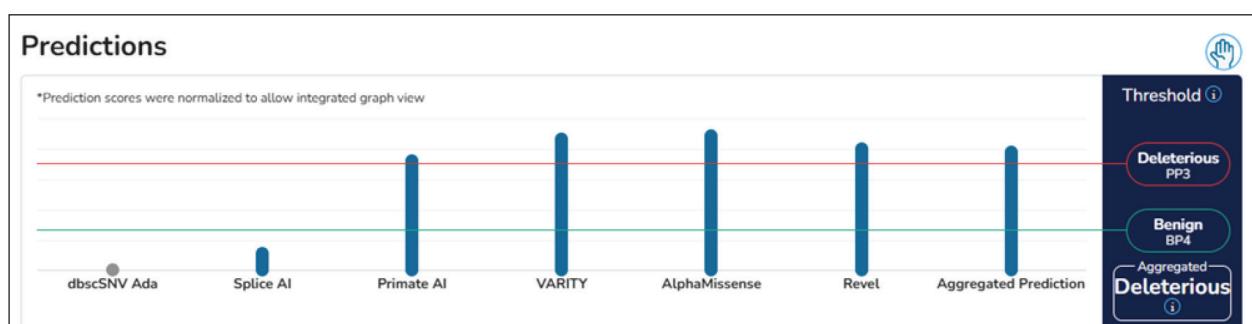
Figure 1. Visualization, analysis, and exploration of the genomic information of the *SOS1* gene. This persistent activation of the RAS–MAPK pathway contributes to the developmental alterations observed in Noonan syndrome (NS). Source: <https://genome.ucsc.edu/>

132	with the severity of cardiac disease. A recent European	189
133	cohort reported a 5.4% mortality rate (95% CI, 1.5%–	190
134	10.1%) in the first year of life and an additional 2% by	191
135	age five. Genotype–phenotype correlations, particularly	192
136	those involving cardiac involvement, improve prognostic	193
137	stratification and open opportunities for targeted and	194
138	personalized strategies (16).	195
139	We report a case of Noonan syndrome caused by a	
140	pathogenic <i>SOS1</i> variant (c.1656G>T; p.Arg552Ser)	
141	to highlight its genotype–phenotype correlation and	
142	diagnostic implications.	
143	Case Presentation	
144	The patient was a male, the second child of a 24-year-old	
145	mother with a history of gestational diabetes and treated	
146	congenital syphilis. There was no parental consanguinity	
147	or family history of genetic or chromosomal disorders,	
148	and no exposure to teratogenic agents was reported	
149	during pregnancy. During prenatal care, an ultrasound	
150	revealed nasal bone hypoplasia and shortening of the	
151	long bones, findings suggestive of skeletal dysplasia.	
152	Karyotype analysis of amniotic fluid using G-banding	
153	was normal (46,XY).	
154	At four months of age, the patient was admitted to the	
155	pediatric intensive care unit for viral bronchiolitis with	
156	bacterial superinfection requiring mechanical ventilation.	
157	During hospitalization, echocardiography revealed	
158	asymmetric septal hypertrophy without obstructive	
159	gradient, moderate supravalvular pulmonary stenosis,	
160	and a persistent ductus arteriosus.	
161	Physical examination showed facial dysmorphism	
162	characterized by a prominent forehead, broad nasal bridge	
163	with bulbous tip, triangular chin, low-set auricles, and	
164	mild exophthalmos. Additional findings included a grade	
165	III–IV/VI systolic ejection murmur at the pulmonary	
166	focus, mild pectus excavatum, short neck, symmetric	
167	shortening of the limbs, and axial hypotonia.	
168	Complementary studies revealed mild pulmonary valve	
169	stenosis (peak gradient 31 mmHg, mean 14 mmHg),	
170	preserved left ventricular systolic and diastolic function	
171	(LVEF 71%), and an electrocardiogram showing	
172	sinus rhythm with an rSR pattern in aVR. Abdominal	
173	ultrasound demonstrated splenomegaly, and renal	
174	ultrasound revealed bilateral dilation of the renal pelvis.	
175	Skeletal radiographs showed bilateral genu varum, with	
176	a normal spine.	
177	Given the multisystem involvement, dysmorphic	
178	features, and normal karyotype, molecular testing	
179	was indicated. Whole-exome sequencing with copy-	
180	number variant (CNV) analysis targeting RASopathy-	
181	related genes identified a heterozygous <i>SOS1</i> variant,	
182	c.1656G>T (p.Arg552Ser), classified as pathogenic in	
183	major databases (ClinVar, HGMD, LOVD) according to	
184	ACMG criteria. These findings confirmed the diagnosis	
185	of <i>SOS1</i> -related Noonan syndrome type 4. Following	
186	molecular confirmation, multidisciplinary follow-up	
187	was initiated, including cardiology, endocrinology, and	
188	genetics surveillance. At the most recent evaluation,	
	the patient remained clinically stable, with growth and	
	neurodevelopment appropriate for age.	
	Genetic and family counseling were provided to support	
	an accurate diagnosis that would guide therapeutic	
	management, follow-up, and prognosis within the	
	framework of precision and personalized medicine.	
	Results	
	Whole-exome sequencing (WES) with copy-number	
	variant (CNV) analysis targeting RASopathy-related	
	genes (LZTR1, PTPN11, RAF1, RIT1, and <i>SOS1</i>) was	
	performed using next-generation sequencing technology,	
	achieving >98% coverage with a minimum depth of	
	20×. Data processing included standard quality control,	
	alignment, and variant annotation according to the	
	reference genome (hg19).	
	A heterozygous variant in <i>SOS1</i> was identified:	
	c.1656G>T in exon 10, resulting in the substitution	
	p.Arg552Ser (Figure 3). This missense variant affects	
	a moderately conserved residue within a functional	
	domain where other deleterious substitutions have been	
	described.	
	The variant is reported as pathogenic in multiple curated	
	databases, including ClinVar (ID 40684; 12 records),	
	LOVD (3 records), and HGMD (CM070274), and has	
	been previously described in patients with Noonan	
	syndrome (PMID: 17586837, 18854871, 18651097,	
	22848035, 22488759, 28378436). It is absent from large	
	population databases (gnomAD v4.1.0, TOPMed Bravo,	
	4.7KJPN, GenomeAsia, GME Variome, Iranome). In	
	silico predictors (REVEL, MetaLR, among others)	
	classify it as deleterious (Figure 4).	
	According to ACMG criteria (PM1, PM2, PM5, PP3, PP5,	
	PS1, PS2, PS4), the <i>SOS1</i> c.1656G>T (p.Arg552Ser)	
	variant was classified as pathogenic. Pathogenic variants	
	in <i>SOS1</i> are associated with Noonan syndrome type 4	
	(Table 1).	
	Discussion	
	Noonan syndrome (NS) is a genetic disease with	
	multisystem involvement and a variable clinical spectrum,	
	and its diagnosis can be challenging in the absence of	
	typical manifestations. This case describes a male infant	
	with prenatal findings of nasal bone hypoplasia and	
	long bone shortening, postnatal dysmorphic features,	
	pulmonary stenosis, and renal anomalies. Molecular	
	analysis identified a pathogenic <i>SOS1</i> variant, c.1656G>T	
	(p.Arg552Ser), confirming the diagnosis of <i>SOS1</i> -	
	related Noonan syndrome type 4. This variant correlates	
	with the patient's clinical phenotype and reinforces the	
	diagnostic value of early exome sequencing in atypical	
	or incomplete presentations.	
	Variants in <i>SOS1</i> account for approximately 20% of	
	NS cases and are typically associated with pulmonary	
	stenosis, distinctive ectodermal findings, and generally	
	preserved cognitive development. The p.Arg552Ser	
	variant observed in our patient shows a genotype–	
	phenotype correlation consistent with previous reports.	
	Celik et al. (17) described patients with <i>SOS1</i> variants who	

245 shared similar craniofacial and cardiac features, while
 246 Najera et al. (2021) reported an infant with comparable
 247 characteristics, including lymphatic abnormalities. These
 248 findings underscore the phenotypic heterogeneity of
 249 SOS1-related NS and consolidate the role of this gene in
 250 the RAS/MAPK signaling pathway (17,18).

251 Early molecular confirmation allowed optimization
 252 of clinical management and the implementation
 253 of individualized follow-up, including continuous
 254 cardiovascular surveillance due to the risk of progression
 255 to hypertrophic cardiomyopathy, as well as growth
 256 monitoring and endocrine evaluation to detect potential
 257 hormonal disturbances. In addition, genetic counseling
 258 was crucial to inform the family about the autosomal
 259 dominant inheritance pattern, recurrence risk, and
 260 future reproductive implications, providing anticipatory
 261 guidance.

262 This case emphasizes how early genetic diagnosis in
 263 prenatal contexts with suggestive skeletal findings
 264 can shorten the diagnostic process and facilitate a
 265 comprehensive clinical approach. The coexistence
 266 of prenatal skeletal markers and postnatal renal
 267 abnormalities—rarely described in SOS1-associated
 268 NS—broadens the known clinical spectrum of this
 269 subtype and provides additional evidence of its
 270 phenotypic variability.


Conclusion

272 Noonan syndrome (NS) is one of the most prevalent
 273 RASopathies, with a broad phenotypic spectrum that
 274 can make clinical diagnosis challenging, particularly
 275 in subtle or atypical presentations. In this case, the use
 276 of next-generation sequencing (NGS) technologies—
 277 specifically whole-exome sequencing (WES) with CNV
 278 analysis targeting LZTR1, PTPN11, RAF1, RIT1, and
 279 SOS1—enabled the identification of a heterozygous
 280 pathogenic SOS1 variant, c.1656G>T (p.Arg552Ser),
 281 which demonstrated a consistent clinical correlation
 282 with the observed phenotype, characterized by
 283 cardiovascular involvement and mild ectodermal
 284 findings.

285 The diagnostic accuracy achieved through WES
 286 underscores its essential role in distinguishing NS
 287 from overlapping RASopathies and optimizing clinical
 288 outcomes. Beyond confirming clinical suspicion,
 289 molecular diagnosis enables precise prognostic
 290 stratification, informs family counseling, and supports
 291 precision-based medical care. This case reinforces the
 292 integration of genomic and bioinformatic tools into
 293 clinical practice, highlighting the transformative value
 294 of precision medicine in hereditary disorders. Although
 295 no curative treatment currently exists, ongoing research
 296 into RAS/MAPK signaling continues to expand
 297 therapeutic possibilities aimed at improving prognosis
 298 and quality of life.

Figure 3. SOS1 Gene SOS1 c.1656G>T Region Viewer Source:<https://franklin.genoox.com/clinical-db/variant/snp/chr2-39249913-CA?app=assessment-tools>

Figure 4. Classification of clinical significance according to predictors.

Table 1. Disease associated with pathogenic variants in SOS1 (compiled by the authors using data from the Human Phenotype Ontology: <https://hpo.jax.org/browse/gene/NCBIGene:6654>).

Gene	Disease (Identifier)	Inheritance	Main Clinical Features
SOS1	Noonan syndrome type 4 (OMIM #610733 / ORPHA #648)	Autosomal dominant	Distinctive facial features (broad forehead, triangular face, hypertelorism, ptosis, low-set ears), short neck, pectus excavatum, short stature, congenital heart defects (pulmonary stenosis, hypertrophic cardiomyopathy, septal defects), keratosis pilaris, curly hair, cryptorchidism, renal anomalies, mild intellectual disability, and a tendency toward abnormal bleeding.

299 Acknowledgments

300 The authors would like to acknowledge the Grupo de
 301 Investigación en Pediatría (GRINPED) for their academic
 302 support, which contributed to the development of this
 303 case report.

304 Conflict of interest

305 The authors of this article have no affiliations with or
 306 involvement in any organization or entity with any financial
 307 interest or non-financial interest in the subject matter or
 308 materials discussed in this manuscript.

309 Consent for participate

310 Written informed consent was obtained from all the
 311 participants.

312 Ethical approval

313 This case report is based on a retrospective review of clinical
 314 data and did not involve any experimental intervention.
 315 Therefore, approval by a medical ethics committee was
 316 not required. Written informed consent was obtained
 317 from the patient's parents, and the report was conducted
 318 in accordance with ethical principles and institutional good
 319 clinical practice standards.

320 Funding

321 This research received no external funding. The authors did
 322 not receive any financial support from public, commercial, or
 323 not-for-profit funding agencies for the conduct of the study,
 324 authorship, or publication of this article.

325 Author details

326 Laura María Zabala Sepúlveda^{1,3}, Lina Johanna Moreno
 327 Giraldo^{2,4}

- 328 1. Resident of Specialization in Pediatrics, Universidad Libre
 329 seccional Cali, Cali, Colombia
- 330 2. Postgraduate in Bioinformatics and Clinical Genomics.
 331 Graduate Teaching Faculty of Health. Universidad Libre
 332 Seccional Cali, Cali, Colombia
- 333 3. Pediatric Research Group (GRINPED), Cali, Colombia
- 334 4. Neuro-genetic and Metabolic Diseases Research Line,
 335 Cali, Colombia

336 References

- 337 1. Carcavilla A, Suárez-Ortega L, Rodríguez Sánchez A,
 338 González-Casado I, Ramón-Krauel M, Labarta JI, et al.
 339 Síndrome de Noonan: actualización genética, clínica y de
 340 opciones terapéuticas. *Pediatr (Engl Ed)*. 2020;93(1):61–
- 341 2. van der Burgt I. Van der Burgt I. Noonan syndrome.
 342 *Orphanet J Rare Dis*. 2007;2(1):4. <https://doi.org/10.1186/1750-1172-2-4>

- 3 3. Baldo F, Fachin A, Da Re B, Rubinato E, Bobbo M, Barbi E. 344 New insights on Noonan syndrome's clinical phenotype: 345 a single-center retrospective study. *BMC Pediatrics*. 346 2022;22(1):734. <https://doi.org/10.1186/s12887-022-03804-2> 347
- 4 4. Noonan JA. Hypertelorism with Turner phenotype. *Am J 349 Dis Child*. 1968;116(4):373–80. [https://doi.org/10.1001/350 archpedi.1968.02100020377005](https://doi.org/10.1001/archpedi.1968.02100020377005) 351
- 5 5. Dahlgren J, Noordam C. Growth, endocrine features, 352 and growth hormone treatment in Noonan syndrome. 353 *J Clin Med*. 2022;11(7):2034. <https://doi.org/10.3390/jcm11072034> 354
- 6 6. Ichikawa Y, Kuroda H, Ikegawa T, Kawai S, Ono S, Kim KS, 355 et al. Cardiac features of Noonan syndrome in Japanese 356 patients. *Cardiol Young*. 2023;33(4):564–9. <https://doi.org/10.1017/S104795112200124X> 357
- 7 7. Naylor PE, Bruno JL, Shrestha SB, Friedman M, Jo 360 B, Reiss AL, et al. Neuropsychiatric phenotypes in 361 children with Noonan syndrome. *Dev Med Child 362 Neurol*. 2023;65(11):1520–9. <https://doi.org/10.1111/dmcn.15627> 363
- 8 8. Allen MJ, Sharma S. *Noonan syndrome*. Treasure Island 365 (FL): StatPearls Publishing; 2025. 366
- 9 9. Perrino MR, Das A, Scollon SR, Mitchell SG, Greer MLC, 367 Yohe ME, et al. Update on pediatric cancer surveillance 368 recommendations for patients with neurofibromatosis 369 type 1, Noonan syndrome, CBL syndrome, Costello 370 syndrome, and related RASopathies. *Clin Cancer Res*. 371 2024;30(21):4834–3. <https://doi.org/10.1158/1078-0432.CCR-24-1611> 372
- 10 10. Martínez-Molina M, Fabregat-Pratdepadua M, Bielsa 373 Marsol I. Síndrome de Noonan con múltiples líntigos. 375 *Actas Dermosifiliogr*. 2024;115(4):414–6. <https://doi.org/10.1016/j.ad.2022.05.028> 376
- 11 11. Sigamani V, Rajasingh S, Gurusamy N, Panda A, 378 Rajasingh J. In silico and in vitro analysis of human SOS1 379 protein causing Noonan syndrome: a novel approach 380 to explore the molecular pathways. *Curr Genomics*. 381 2021;22(7):526–40. <https://doi.org/10.2174/138920292266621130144221> 382
- 12 12. Agrela Rodrigues FDA, Kamimura HK. Síndrome de 384 Noonan: uma revisão sobre etiologia genética, diagnóstico 385 e abordagens clínicas. *Cienc Lat Rev Cient Multidiscip*. 386 2025;9(1):8987–99. https://doi.org/10.37811/cl_rcm.v9i1.16524 387
- 13 13. Corso BM, Simões LDO, De Oliveira KMK, Dos Santos AM, 389 Angeloni LL, De Oliveira Sobrinho RP, et al. Genotype- 390 phenotype analysis and new clinical findings in a series 391 of 24 patients presenting with Noonan syndrome and 392 related disorders. *Mol Syndromol*. 2025; 15:1. <https://doi.org/10.1159/000545410> 393

395 14. Zenker M, Edouard T, Blair JC, Cappa M. Noonan
396 syndrome: improving recognition and diagnosis. *Arch Dis
397 Child.* 2022;107(12):1073–8. [https://doi.org/10.1136/
398 archdischild-2021-322858](https://doi.org/10.1136/archdischild-2021-322858) 406
399 15. Rodríguez F, Gaete X, Cassorla F. Etiology and treatment
400 of growth delay in Noonan syndrome. *Front Endocrinol
401 (Lausanne).* 2021;12:701197. [https://doi.org/10.3389/
402 fendo.2021.691240](https://doi.org/10.3389/fendo.2021.691240) 407
403 16. Santoro M, Barisic I, Coi A, Tan J, Garne E, Loane M, et
404 al. Health outcomes and drug utilization in children with
405 Noonan syndrome: a European cohort study. *Orphanet J
Rare Dis.* 2025;20(1):76. [https://doi.org/10.1186/
406 s13023-025-03594-7](https://doi.org/10.1186/s13023-025-03594-7) 408
17. Celik VD, Halici T, Alomari O. Targeted clinical analysis
of PTPN11, SOS1, and NRAS mutations and associated
cardiac, auditory, and ophthalmologic findings in Noonan
syndrome patients. *Mol Syndromol.* 2025; 16:N1–21. 409
<https://doi.org/10.1159/000546683> 410
18. Nájera A, Granda D, Arteaga Espinosa ME. Síndrome de
Noonan asociado a mutación del gen SOS1. *Rev Ecuat
Pediatr.* 2021;22(3):S1–6. <https://doi.org/10.52011/93> 411
412 413
414 415